Le vote le Pen, un vote rural ?

Les résultats du vote à peine tombés, les analyses se multiplient. J’ai entendu, entre autres choses, à de nombreuses reprises, des commentateurs indiquer que le vote le Pen augmentait à mesure que l’on s’éloignait des villes. Est-ce bien le cas ? La réponse peut sembler en apparence paradoxale : oui, le vote le Pen est plus important dans le monde rural, mais non, ce n’est pas parce qu’on vit dans le monde rural qu’on vote plus le Pen. Or je pense qu’au moins certains commentateurs, et sans doute certains de ceux qui les écoutent, font la confusion entre ces deux idées.

Pour bien comprendre ce que je veux dire, je vous propose d’analyser la géographie du vote, à l’échelle des communes de France métropolitaine, en me focalisant sur le cas de Marine Le Pen, donc, et en comparant les résultats aux deux tours de l’élection, pour 2017 et pour 2022.

Mon objectif étant d’identifier l’influence éventuelle du degré de ruralité sur le vote, il convient de définir ce que l’on entend par commune rurale et par commune urbaine. Le mieux est de s’appuyer sur la nouvelle définition de la ruralité définie par l’Insee, définition basée sur la grille communale de densité : une commune rurale est une commune très peu dense ou peu dense, une commune urbaine est une commune très dense ou de densité intermédiaire (voir ici pour une présentation de cette nouvelle définition).

88% des communes sont rurales, elles concentrent 33% de la population au sens du recensement millésime 2019 et 37% des inscrits au 2ème tour de l’élection présidentielle de 2022.

Fort de cette définition, on peut comparer la moyenne des scores obtenus par Marine le Pen aux deux tours des deux dernières élections présidentielles. Commençons par comparer les résultats bruts, en dehors de toute autre considération.

Le tableau se lit de la façon suivante : le fait d’être une commune rurale plutôt qu’une commune urbaine augmente le score de Marine le Pen au premier tour de l’élection présidentielle de 2017 de 6,6 points de pourcentage en moyenne.  En 2022, l’augmentation est en moyenne de 8,6 points de pourcentage. Résultats sans aucune ambiguïté : les scores de la candidate du rassemblement national sont en moyenne bien plus importants dans le monde rural que dans le monde urbain, de 7 à 9 points aux premiers tours, de plus de 10 points aux deuxièmes tours.

Il y a cependant une autre information importante contenue dans le tableau : la part expliquée par le caractère rural des communes dans l’ensemble des différences de scores que l’on observe entre ces mêmes communes. On constate alors que les différences moyennes de résultats entre communes rurales et communes urbaines sont certes importantes, mais cette caractéristique n’explique qu’une part relativement faible de l’ensemble des différences constatées, moins de 20% dans tous les cas. Dit encore autrement : entre 81% et 88% des différences de scores entre rural et urbain s’expliquent par autre chose que le caractère rural ou urbain des communes.

Par ailleurs, une analyse plus satisfaisante des différences de scores entre communes consiste à intégrer non seulement leur dimension rurale ou urbaine, mais aussi des variables permettant de saisir les différences de composition sociale des territoires. Supposons pour illustrer que le vote le Pen soit en moyenne moins important chez les jeunes. Si la part des jeunes est plus faible dans les communes rurales, on s’attendra à ce que le score de Marine le Pen y soit plus fort, toute chose égale par ailleurs, non pas en raison du caractère rural de la commune stricto sensu, mais parce que la composition par âge y est différente.

Dans cette perspective, j’ai  comparé à nouveau les moyennes de scores entre communes rurales et communes urbaines en neutralisant certains de ces effets de composition, à l’aide d’un nombre volontairement réduit de variables : la part des diplômés du supérieur, la part des personnes de 65 ans et plus, la part des personnes de 15 à 29 ans et la part des immigrés dans la population. J’ai également introduit une indicatrice régionale. La question est de savoir si, à caractéristiques sociales introduites dans le modèle égales, et à région identique, on observe encore, ou non, des différences entre communes urbaines et communes rurales.

L’introduction de ces nouvelles variables change tout : l’effet ruralité est significativement réduit, le fait d’être une commune rurale plutôt qu’une commune urbaine n’augmente le score de Marine le Pen que, au plus, d’un peu plus d’un point de pourcentage. On constate également que l’introduction de ces variables améliore considérablement l’explication des différences de vote qui atteint voire dépasse les 80%. Il s’avère donc que, à caractéristique sociale identique, le fait de vivre dans une commune rurale plutôt que dans une commune urbaine ne conduit que très peu à voter plus le Pen.

Pour mesurer plus précisément le jeu des différentes variables, vous trouverez ci-dessous le tableau complet des résultats. Le coefficient associé à chaque variable vous donne l’effet de la variable sur le score de Marine le Pen (tous les coefficients sont statistiquement significatifs).

Guide de lecture : quand la part des diplômés du supérieur augmente d’un point de pourcentage, le score de Marine le Pen diminue de 0,5 point au premier tour de 2017 et de 0,7 point au deuxième tour de 2022. Le fait d’être une commune bretonne plutôt qu’une commune d’Auvergne-Rhône-Alpes diminue en moyenne de 7,8 points de pourcentage son score au premier tour de 2017 et de 11,2 points au deuxième tour de 2022.

On constate que le vote de Marine le Pen diminue quand la part des diplômés augmente, quand la part des jeunes ou des personnes âgées augmente, et quand la part des immigrés dans la population augmente. On observe également des effets régionaux marqués : effet très négatif sur son score d’être une commune de Bretagne, des Pays de la Loire, puis de Nouvelle-Aquitaine, effet très positif sur son score d’être une commune de PACA, de Corse, des Hauts-de-France ou de Grand Est.

Au final, contrairement à ce qu’une analyse sommaire de la géographie des votes pourrait laisser penser, le fait de vivre dans le rural ne conduit pas à voter plus pour Marine le Pen, pas plus que le fait de vivre dans l’urbain ne conduit à voter moins pour elle. Si le score de Marine le Pen augmente quand on s’éloigne des villes, c’est avant tout lié à la composition sociale des territoires, ainsi qu’à des effets macro-régionaux.

Géographie des taux de chômage : une forte inertie, quelques mobilités

Nous travaillons au sein du Service Etudes et Prospective du Pôle Datar de la Région Nouvelle-Aquitaine sur la géographie des taux de chômage, à différentes échelles géographiques (départements, zones d’emploi, EPCI), ainsi que sur le lien entre la dynamique de l’emploi et la dynamique du chômage. L’objectif est d’identifier des territoires qui sont dans une situation relative plus problématique, de documenter progressivement les déterminants de leur situation, pour agir ensuite plus efficacement et réduire les problèmes auxquels ils sont confrontés.

Ce travail a donné lieu à la production d’une première note disponible sur le portail des territoires de la Région, à laquelle vous pouvez accéder en cliquant ici. On mobilise le taux de chômage au sens du recensement, dont la définition est plus large que la définition traditionnelle, elle inclut pour partie ce que l’on appelle le halo du chômage (sont notamment comptabilisées les personnes qui se déclarent spontanément à la recherche d’un emploi).

Si le taux de chômage évolue avec le temps, à la hausse où à la baisse, l’analyse de la géographie des taux de chômage révèle une forte inertie : la situation relative des territoires bouge peu, ceux à plus fort taux de chômage que la moyenne restent globalement à plus fort taux de chômage, ceux à plus faible taux restent à plus faible taux. On a du mal à faire converger les taux à la baisse. Dans la note, on montre par exemple que les taux de chômage observés au recensement millésime 2012 (qui couvre la période 2010-2014) à l’échelle des EPCI “expliquent” 93% des taux de chômage du recensement millésime 2017 (qui couvre la période 2015-2019). Quand je dis “explique”, il s’agit en fait d’une corrélation, d’où les guillemets : ce qui est calculé, c’est le coefficient de corrélation entre les taux de chômage d’une année et ceux de l’autre année, un coefficient de 0,93 signifie que 93% des différences géographiques observées en 2017 peuvent être expliquées par les différences observées en 2012.

En complément du document, j’ai analysé depuis les taux de chômage (au sens de l’organisation internationale du travail cette fois, pas au sens du recensement) à l’échelle des départements : les taux 2010 “expliquent” 88% des taux 2019. Ceux de 2003 en “expliquent” encore 75%. Plus on s’éloigne dans le temps, moins le lien est important, heureusement, mais les taux de 1982 “expliquent” encore, malgré tout, 31% des taux de 2019.

Les deux graphiques ci-dessus représentent les nuages de points départementaux, chaque numéro correspond au numéro du département, les numéros en rouge correspondant aux départements de Nouvelle-Aquitaine. On voit la force du lien entre les taux de 2010 et ceux de 2019, et le lien beaucoup plus faible entre les taux 2019 et ceux de 1982 (pour information, il n’y a pas eu de changement radical dans la géographie des taux de chômage entre 2019 et 2020, la corrélation dépasse les 95%).

Une forte inertie, donc, mais quelques mobilités au sein de la distribution des taux de chômage. S’il n’y avait pas de mobilité, les coefficients seraient de 100%. On peut donc identifier les territoires qui ont connu les plus fortes évolutions dans leur situation relative, soit à la hausse (dégradation relative du taux de chômage), soit à la baisse (amélioration relative du taux de chômage). Sur cette base, dans le document, on identifie les territoires de Nouvelle-Aquitaine  qui non seulement ont des taux de chômage élevés, mais qui en plus connaissent une dégradation relative de leur situation, ce qui pourrait justifier une attention plus importante.

L’autre élément sur lequel on insiste ensuite est la très faible relation entre croissance de l’emploi et dynamique du chômage : ce n’est pas parce qu’on créé beaucoup d’emplois sur un territoire que le nombre de chômeurs ou le taux de chômage baissent, et ce n’est pas parce qu’on en créé peu, voire que l’emploi diminue, que le taux de chômage augmente. On observe en fait toutes les situations : croissance de l’emploi et du chômage, croissance de l’emploi et baisse du chômage, baisse de l’emploi et hausse du chômage, baisse de l’emploi et du chômage. Ceci peut résulter d’un large ensemble de déterminants : des zones attirent de la population, créé de l’emploi, mais pas suffisamment pour pourvoir les besoins, d’où la hausse du chômage ; d’autres zones, parfois les mêmes, proposent des emplois saisonniers ou intérimaires, ce qui peut résulter en une hausse du taux de chômage annuel moyen ; dans d’autres cas, les emplois créés ne peuvent être pourvus par les personnes au chômage, parce que ces personnes ne disposent pas des compétences recherchées, ou qu’elles sont confrontées à d’autres problèmes (logement, transport, santé, garde d’enfants, …) ; des territoires à croissance négative de l’emploi voient le chômage diminuer parce que les personnes qui sont à la recherche d’un emploi quittent le territoire ; etc.

En collectant des éléments plus précis sur la situation des territoires, on doit pouvoir mieux agir. Par exemple, lorsqu’on se trouve dans un territoire à fort chômage et faible création d’emploi, on peut se dire que des actions en termes de développement économique sont souhaitables. Quand on se trouve dans des territoires à forte dynamique d’emploi, ce n’est sans doute pas la priorité, des actions en termes de formation, d’orientation, voire de santé, de mobilité, de logement, …, sont préférables, en fonction des problèmes plus précis identifiés. C’est à ce travail d’identification plus précise des problèmes à traiter auquel nous allons nous atteler dans les prochains mois, en nous appuyant notamment sur la connaissance terrain des collègues de l’institution régionale et des acteurs des territoires concernés.

Géographie des hauts salaires : une photographie du monde d’avant

Je ne sais pas à quoi ressemblera le monde d’après Covid, s’il se distinguera beaucoup du monde d’avant, en attendant la note que vient de publier l’Insee sur les hauts salaires en France permet de voir d’où l’on part.

On y apprend que le top 1% des salariés du privé est constitué de 163000 salariés équivalent temps plein, qui touchent au moins chaque mois  8680€ net, qu’il est constitué majoritairement de dirigeants et de cadres, qu’il concentre 8% de la masse salariale du secteur privé, part qui augmente depuis trente ans alors qu’elle avait baissé des années 1960 aux années 1980.

S’agissant de la géographie des salaires, si l’on regarde ce qu’ils pèsent dans deux des 101 départements français, Paris et les Hauts-de-Seine, le constat est édifiant :

Ces deux départements, qui représentent 5,8% de la population de France métropolitaine au 1er janvier 2020, concentrent une part déjà plus importante des salaires du privé, part qui croît pour atteindre des sommets quand on se focalise sur les très hauts salaires.

Ces résultats sont similaires à ceux que nous avions observé avec Michel Grossetti il y a deux ans de cela : nous montrions plus précisément que les différences géographiques de salaires en France étaient relativement faibles, en dehors précisément de ces deux départements, qui concentrent des métiers en lien avec l’activité des sièges sociaux, de la banque et de la finance.

Il convient de garder en tête ces chiffres quand on s’amuse ensuite à comparer les PIB par habitant des régions françaises : les PIB sont en effet régionalisés sur la base des salaires versés, le fait que l’Ile-de-France connaissent un PIB par habitant bien supérieur aux autres régions tient pour partie à cette concentration des très hauts salaires. Difficile dès lors de parler de “surproductivité” de l’Ile-de-France comme le font de trop nombreux commentateurs, c’était l’un des messages de notre article.

On peut s’interroger également sur le calibrage de notre système fiscal, sa progressivité, en se disant que ce serait bien qu’il résorbe un peu mieux qu’aujourd’hui les inégalités de niveau de vie, qui dépendent au moins pour partie de ces inégalités de salaire. On pourrait aussi s’interroger sur la pertinence de cette concentration atypique des pouvoirs économiques, politiques, médiatiques dans la région capitale. Bref, quelques sujets pour le monde d’après.

En 2020, une mortalité plus forte et une géographie différente (épisode 24)

L’Insee a livré hier les chiffres sur la mortalité toutes causes confondues jusqu’au 13 avril 2020. La tendance observée la semaine dernière selon laquelle la mortalité en mars-avril est plus forte cette année que l’an dernier, mais aussi qu’en 2018, année de grippe longue et virulente, se confirme. Cette surmortalité s’inscrit cependant de manière spécifique dans l’espace, car contrairement à d’autres épidémies, elle continue de se caractériser par une forte concentration géographique, qui n’est pas sans interroger.

S’agissant de la surmortalité, j’ai reproduit le graphique de l’Insee sur le nombre de décès quotidien, pour la période du 1er mars au 13 avril. On constate que sur cette période, la mortalité en 2018 est sensiblement supérieure à celle de 2019, et que celle de 2020 les dépasse à partir de mi-mars, pour atteindre 2700 décès par jour au 1er avril, et redescendre heureusement depuis. Sur cette période, la surmortalité 2020 est supérieure de 25% à celle de 2019 et de 13% à celle de 2018. Étant entendu qu’elle a été limitée par le confinement, dont certains collègues estiment qu’il a évité plus de 60 000 décès.

Contrairement à ce que l’on observe dans le cas des grippes saisonnières, cette mortalité n’est cependant pas distribuée de manière homogène dans l’espace, elle est fortement concentrée, à commencer par le Grand Est et l’Ile-de-France. Pour le montrer, j’ai calculé un indicateur de concentration géographique des décès pour les trois années, qui vaut 1 en cas de concentration maximale et 100 en cas de concentration minimale.

Premier constat : même si la mortalité en 2018 est sensiblement supérieure en mars-avril à celle observée en 2019, les indices de concentration spatiale sont très proches, avec des valeurs relativement élevées qui oscillent autour de 67%. L’épidémie de grippe de 2018, plus virulente et plus longue que celle de 2019, s’est donc déployée de manière homogène dans l’espace.

Pour l’épidémie actuelle, ce n’est pas la même histoire : la valeur de l’indice de concentration décroche de la tendance quand la mortalité 2020 dépasse celle des années précédentes. L’indice descend jusqu’à 50%, signe d’un accroissement de la concentration spatiale des décès, qui se déploient de manière hétérogène dans l’espace.

Ce constat fait sur l’ensemble des décès est confirmé, et même sensiblement renforcé, si l’on analyse les données sur le Covid 19 de Santé publique France, en calculant le même indice de concentration spatiale.

L’indice augmente certes en début de période, mais il prend des valeurs faibles et ne dépasse jamais les 30%, signe d’une forte concentration spatiale de l’épidémie, relativement stable dans le temps.

Jusqu’à présent, lorsque je suis interrogé sur ce double résultat (forte concentration spatiale de l’épidémie, stabilité de cette concentration), je réponds qu’il faut y voir au moins en partie l’effet bénéfique du confinement. Il semble cependant que le confinement ne puisse pas tout expliquer : une telle concentration spatiale de l’épidémie se retrouve en effet dans des pays qui n’ont pas ou peu mis en œuvre le confinement, comme la Suède ou les Pays-Bas par exemple.

source : https://legrandcontinent.eu/fr/observatoire-coronavirus/ (site consulté le 25/04/2020)

[allez sur le site qui présente cette carte pour visualiser en survolant les régions le taux de décès et la proportion de cas]

Ce constat est au cœur des interrogations d’Antoine Flahault (merci à twitter, plus précisément à Tristan Klein, de m’avoir transmis le lien vers son interview), dont l’hypothèse explicative est que les personnes asymptomatiques joueraient un faible rôle dans la diffusion de l’épidémie, contrairement à ce que l’on observe pour les grippes saisonnières.

Pour la grippe, que je connais bien pour avoir participé à la mise en place du réseau Sentinelles en France : quand survient un pic épidémique, toute la France est concernée de manière synchrone (…), tout le pays connaît le pic durant la même semaine ou presque. Comment l’expliquer ? Mon hypothèse est que l’ensemencement préalable par le virus de la grippe est important avant le démarrage visible de l’épidémie saisonnière et qu’il est causé par les personnes asymptomatiques, donc silencieuses, qui vont déclencher l’épidémie finalement visible au même moment partout dans toute l’Europe.

(…) Cette particularité du coronavirus sur le virus grippal est importante, car beaucoup de modèles mathématiques utilisées pour COVID sont des modèles recyclés de la grippe qui repose sur une hypothèse forte de pan-mixage. Or, elle pourrait s’avérer moins valable pour COVID, s’il s’avère que les personnes asymptomatiques n’ensemencent pas le pays de façon massive comme dans le cas de la grippe.

Ceci ne signifie bien sûr pas que le confinement ne sert à rien, il a sans conteste permis d’éviter un nombre important de contamination et de décès. Mais il semble bien qu’il n’explique pas tout. Et force est de constater que les raisons de cette concentration spatiale de l’épidémie ne sont pas, pour l’heure, totalement claires.

Covid 19, épisode 19 : la géographie des décès en Ehpad, proche de celle en hôpitaux

Pour dire des choses sur la géographie du Covid 19 en France, j’exploite depuis le départ les seules statistiques disponibles, celles fournies par Santé publique France, qui nous renseignent sur les décès en hôpitaux, et en hôpitaux seulement, à l’échelle des régions et des départements. Depuis deux semaines environ, le Ministère mentionne cependant chaque jour, en plus des décès en hôpitaux, le nombre de décès France entière recensés dans les établissements sociaux et médicaux-sociaux (Esms), composés notamment des Ehpad. A la date du 16 avril, on comptabilise ainsi un total de 17 920 décès, dont 11 060 en hôpital et 6 860 en Esms, soient des proportions respectives de 60% et 40% environ.

Jusqu’à présent, on ne disposait donc pas de chiffres précis sur la géographie des décès en Esms, alors qu’on peut légitimement se demander si cette géographie est la même que celle des décès en hôpitaux, ou non. Cette lacune est en partie réparée par la publication des points épidémiologiques régionaux sur le site de Santé publique France. Je dis bien en partie, car il m’a fallu dépouiller les 13 documents des régions de France métropolitaine pour trouver des chiffres, qui de surcroît ne sont pas tous mentionnés de la même façon : dans certains documents, on nous donne le nombre de décès en Esms sans plus de précisions, dans d’autres documents (dans 7 cas sur 13) on distingue les décès en Esms et ceux en hôpitaux de résidents des Esms.

J’ai me suis donc “amusé” à collecter les informations pour les 13 régions métropolitaines en retenant le nombre total de décès de résidents Esms sur la période du 1er mars au 14 avril 2020 (décès en hôpitaux ou non), j’ai calculé le poids dans l’ensemble de chaque région, puis je les ai rapporté aux poids de ces mêmes régions dans les décès en hôpitaux sur la même période. J’obtiens ainsi un indice qui vaut 1 si le poids d’une région dans les décès de résidents Esms est le même que son poids dans les décès en hôpitaux, et qui est supérieur à 1 (respectivement inférieur à 1) si son poids dans les décès Esms est supérieur (respectivement inférieur) à son poids dans les décès en hôpitaux. Si les chiffres diffèrent sensiblement de 1, c’est que les deux géographies, celle des décès en hôpitaux et celle des décès en Ehpad et autres Esms, diffèrent sensiblement.

J’obtiens le tableau suivant :

Données Santé publique France, période du 1er au 14 avril 2020

De manière générale, les deux géographies sont relativement proches. On observe cependant quelques différences : Auvergne Rhône Alpes et Centre Val de Loire pèsent 40% de plus dans les décès en Esms que dans les décès en hôpitaux et l’Ile-de-France 20% de plus. A l’inverse, Grand Est et Bourgogne Franche-Comté, deux régions très touchées quand on analyse les taux de mortalité en hôpitaux seulement, pèse un peu moins dans les décès en Esms. On constate que la plupart des régions de l’Ouest et du Sud (Pays de la Loire, Nouvelle-Aquitaine, Occitanie, PACA), qui accueillent un nombre importants d’établissements sociaux et médicaux sociaux, et qui sont jusqu’à présent peu touchées par l’épidémie, pèsent encore moins dans les décès en Esms que dans les décès en hôpitaux.

Au final, la forte concentration géographique des décès liés au Covid 19 qu’on observe en analysant les seuls décès en hôpitaux n’est donc pas sensiblement modifiée par les chiffres sur les décès de résidents d’Esms.


Episodes précédents : Episode 1 (comparaisons régionales)|Episode  2 (résidences secondaires)|Episode 3 (sur la mortalité)|Episode 4 (comparaison France Italie)|Episode 5 (cas américain et espagnol)|Episode 6 (diffusion spatiale de l’épidémie)|Episode 7 (géographie des Ehpad)|Episode 8 (prévision décès Ehpad)|Episode 9 (sur la mortalité, suite)|Episode 10 (diffusion spatiale, suite)|Episode 11 (taux de mortalité)|Episode 12 (l’impact économique)|Episode 13 (confinement et mobilités départementales)|Episode 14 (chiffres Insee sur la mortalité)|Episode 15 (distanciation sociale)|Episode 16 (impact économique)|Episode 17 (taux de mortalité)|Episode 18 (des pneumatiques aux respirateurs)

Covid 19, épisode 14 : actualisation des chiffres de l’Insee

Comme la semaine dernière, et comme la précédente, l’Insee vient de livrer les chiffres de la mortalité en France, toutes causes de décès confondues, cette fois pour la période du 1er au 30 mars 2020.

Voici les principaux points que je retiens :

  • France entière, la mortalité observée entre le 1er et le 30 mars 2020 est supérieure à celle observée sur la même période en 2019 (57 441 décès contre 52 011 en 2019), mais elle reste toujours inférieure à celle observée en 2018 (58 641 décès),
  • A l’échelle régionale, on observe une très forte hausse de la mortalité (plus de 39%) pour Grand Est et l’Ile-de-France et une forte hausse (plus de 10%) pour les Hauts de France et Bourgogne – Franche-Comté. Seules la Nouvelle-Aquitaine et l’Occitanie voient la mortalité baisser.
  • A l’échelle des départements, les plus touchés sont ceux des régions Grand Est et Ile-de-France. On observe cependant une augmentation du nombre de départements concernés par une hausse de la mortalité : de 24 départements il y a deux semaines, on est passé à 48 la semaine dernière et 57 cette semaine. Si on limite aux départements ayant connu une hausse de plus de 10% de la mortalité, les chiffres sont respectivement de 9, 16 et 33 (voir également la carte ci-dessous),
  • La hausse des décès ralentit dans la région Grand Est, elle reste vive en Ile-de-France.

Par rapport aux semaines passées, l’Insee a procédé à différents approfondissements, avec des indications sur les décès en fonction du sexe, de l’âge et du lieu du décès. On apprend ainsi que la moitié des décès concernent des personnes de plus de 85 ans et seulement 13% des personnes de moins de 65 ans. L’augmentation de la mortalité toutes causes confondues est plus forte pour les hommes que pour les femmes, ce qui est cohérent avec le fait que l’épidémie touche beaucoup plus les premiers. L’Insee observe enfin un excès de mortalité en établissement pour personnes âgées en Île-de-France, dans le Grand Est et dans une moindre mesure dans les Hauts-de-France.


Episode 1 (comparaisons régionales)|Episode  2 (résidences secondaires)|Episode 3 (sur la mortalité)|Episode 4 (comparaison France Italie)|Episode 5 (cas américain et espagnol)|Episode 6 (diffusion spatiale de l’épidémie)|Episode 7 (géographie des Ehpad)|Episode 8 (prévision décès Ehpad)|Episode 9 (sur la mortalité, suite)|Episode 10 (diffusion spatiale, suite)|Episode 11 (taux de mortalité)|Episode 12 (l’impact économique)|Episode 13 (confinement et mobilités départementales)

Covid 19, épisode 7 : la géographie des Ehpad

Une des limites des statistiques publiées quotidiennement par Santé Publique France est qu’elles ne recensent que les décès en hôpitaux, ce qui conduit à sous-estimer la mortalité de l’épidémie, car l’on sait qu’il existe aussi de nombreux décès en Ehpad (Établissements d’hébergement pour personnes âgées dépendantes) ou en ville. Ce biais devrait être partiellement éliminé avec la publication des chiffres des Ehpad,  même si ce n’est pas simple, vu le nombre de structures (près de 7 500).

Dans l’attente, je vous propose quelques éléments d’analyse de la géographie des personnes âgées, les plus exposées à l’épidémie, et des structures d’accueil. Pour cela, j’ai collecté des chiffres sur la population par tranches d’âge des départements en janvier 2020, ainsi que des chiffres sur les établissements d’accueil des personnes âgées (qui datent de 2017).

Premiers éléments de cadrage : on compte en France métropolitaine 26,6% de personnes de 60 ans et plus, et 9,5% de personnes de 75 ans et plus au 1er janvier 2020. Ces proportions varient cependant selon les départements, entre 6% pour le Val d’Oise ou la Seine et Marne à 15% pour le Lot ou la Creuse s’agissant des 75 ans et plus, soit un rapport de 2,5 pour 1 environ, et entre 19% et 39% (pour les mêmes départements) pour les plus de 60 ans.

J’ai construit une première carte qui représente à la fois la part des personnes de plus de 75 ans dans la population et le nombre de décès par département recensés par Santé publique France dans cette même population.

La géographie des décès et celle des personnes âgées sont pour l’instant très dissemblables, les décès se concentrant à l’est du pays, les personnes âgées étant plus présentes (en % de la population) à l’ouest et au sud.

S’agissant des structures d’accueil pour personnes âgées, l’Insee distingue les Ehpad, les maisons de retraite non Ehpad, les résidences autonomie, ainsi que le nombre de places en soins infirmiers à domicile et le nombre de lits en soin longue durée. On dénombre au total, France entière, fin 2017, plus de 600 000 places en Ehpad et près de 900 000 places toutes structures confondues. Je me concentre sur les places en Ehpad.

On constate que le nombre de places par habitant est assez bien corrélée au nombre de personnes de 75 ans et plus :

La relation est bonne, mais elle n’est pas parfaite : le “taux d’équipement” en Ehpad varie ainsi de 41 places pour mille personnes de 75 ans et plus à Paris à 169 places pour mille en Lozère. Ces différences ne sont cependant pas si simples à expliquer : certains départements, notamment dans le pourtour méditerranéen, ont des taux d’équipements en apparence faibles (74 pour mille dans le Var, 76 pour mille dans le Vaucluse), non pas parce qu’il y a peu de structures, mais parce qu’il y a une proportion encore plus forte, relativement à la moyenne, de personnes de 75 ans et plus. Dans d’autres cas, le taux d’équipement est fort car la construction d’hébergements pour personnes âgées a été vu comme un vecteur de développement économique local (en ex-Limousin par exemple).

Toujours est-il que la carte des places en Ehpad diffère un peu de la carte des personnes de 75 ans et plus (j’ai représenté sur la carte le nombre de places en Ehpad, et ce nombre pour 1000 personnes de 75 ans et plus) :

Sur la base de cette géographie des personnes âgées et des Ehpad, on peut s’interroger sur ce que vont nous apprendre les chiffres sur les décès dans ces structures : vont-ils concerner prioritairement les régions les plus touchées de l’est du pays, ce qui signifierait que l’épidémie reste principalement cantonnées dans ces régions, et qu’il convient de tout faire pour qu’elle ne s’étende pas ? Va-t-on assister à l’inverse à un “rééquilibrage” géographique, qui signifierait que la diffusion de l’épidémie vers l’ouest et le sud a été plus forte que ce que l’on imagine ? Impossible de répondre pour l’instant, mais on comprend que la réponse est essentielle.

Covid 19, épisode 6 : la diffusion spatiale de l’épidémie

Billet important aujourd’hui, sur la question de la diffusion spatiale de l’épidémie. Je vous propose de comparer trois pays : l’Espagne, la France et l’Italie.

Pour cela, j’ai collecté les données sur le nombre de décès par région pour la période commune aux trois bases de données, à savoir la période allant du 18 mars au 29 mars 2020. J’ai également collecté les mêmes données à l’échelle des départements, pour la France.

J’ai ensuite calculé un indicateur synthétique de concentration spatiale de la population, d’une part, et des décès, d’autre part. Les valeurs de l’indicateur varient entre 1 en cas de concentration maximale et 100 en cas de concentration minimale.

Voici un premier tableau de résultat, je vous explique ensuite comment le lire :

J’obtiens pour la population espagnole un indice de 50 : cela signifie que tous se passe comme si la population espagnole était concentré dans 50% des régions d’Espagne. Pour les décès en Espagne à la date du 18 mars, l’indice est de 12 (tout se passe comme si 12% des régions étaient concernées par les décès). Il est beaucoup plus faible, ce qui signifie que les décès sont beaucoup plus concentrés géographiquement que la population. On peut rapporter les deux indices (50/12), on obtient alors les ratios de la quatrième ligne, soit 4,2 pour l’Espagne : les décès sont en gros 4 fois plus concentrés que la population.

Qu’observe-t-on comme principaux résultats ?

  • les populations des trois pays sont répartis de manière relativement similaires entre leurs régions (indices compris entre 50 et 60),
  • toujours pour les régions, les décès à la date initiale sont entre 3 à 5 fois plus concentrés que les populations,
  • A l ‘échelle des départements français, la concentration spatiale de la population est plus faible (indice de 63), celle des décès est beaucoup plus forte (indice de 7), soit une concentration des décès près de 9 fois supérieure à celle de la population,
  • à l’échelle des régions, la concentration spatiale des décès diminue de manière assez sensible pour la France et l’Espagne, même si ils restent plus de deux fois plus concentrés que la population. L’évolution pour l’Italie est beaucoup plus faible, la diffusion spatiale des décès est donc moins marquée pour ce pays, ce qui peut s’expliquer par un confinement pus précoce et, en apparence, relativement efficace,
  • L’évolution pour les départements français est la plus marquée de toute, bien plus marquée que pour les régions françaises : cela signifie que le mouvement dominant pour la France correspond à une diffusion interdépartementale mais infra-régionale de l’épidémie.

Pour compléter l’analyse, j’ai construit un graphique qui retrace les indices de concentration spatiale des décès pour les trois pays, en prenant la date du 18/03/2020 comme indice base 100, ce qui permet de visualiser le profil d’évolution de la géographie des décès. On obtient le graphique suivant :

On retrouve logiquement les mêmes résultats (diffusion plus marquée pour l’Espagne et la France, très faible diffusion pour l’Italie), avec cependant un profil différent pour l’Espagne (hausse continue) et la France (hausse jusqu’au 23/03/2020 puis stabilité).

Pour finir, j’ai cartographié les décès à l’échelle des départements français à 3 dates (18/03, 23/03, 29/03). Sont représentés les indices qui rapportent pour chaque département le poids dans les décès au poids dans la population.

Les départements en blanc sont ceux qui n’ont connu qu’un nombre très limité de décès, leur nombre diminue fortement, signe de la diffusion de l’épidémie : pratiquement tous les département sont désormais concernés, mais de manière très hétérogène. Pour l’instant, la diffusion a surtout opéré au sein des régions Grand Est, Haut-de-France, Ile-de-France et Bourgogne Franche-Comté.

Covid 19, épisode 5 : géographie américaine et espagnole

En complément de mon billet d’hier sur les cas français et italiens, je vous propose des résultats pour l’Espagne et les Etats-Unis. j’ai trouvé et récupéré les données sur le covid 19 pour l’Espagne ici, et les données sur la population par région sur Eurostat. Pour les Etats-Unis, les données sur le Covid 19 sont disponibles ici, celles sur la population par Etat par là.

J’ai procédé de la même façon qu’hier : calcul du poids des régions dans l’ensemble de la population, dans l’ensemble des décès, puis rapport des deux indicateurs pour obtenir un indice qui se commente par rapport à la valeur de 1 : une valeur de 2, par exemple, signifie que la région considérée pèse deux fois plus dans les décès que dans la population (surmortalité), une valeur de 0,5 qu’elle pèse deux fois moins (sousmortalité). Les tableaux sont présentés plus bas.

J’ai également calculé des indicateurs synthétiques de concentration spatiale, pour pouvoir comparer les pays, je détaille un peu car il y a un petit nouveau : comme hier, j’ai calculé le poids de la première région dans l’ensemble des décès, notons le C1. J’ai également noté le poids des deux premières régions, notons le C2. Pour les comparaisons France, Italie et Espagne, cela ne pose pas de problème majeur, car le nombre de régions est à peu près le même (18 pour la France, 19 pour l’Espagne, 21 pour l’Italie). Cela change avec les 51 Etats américains. J’ai donc calculé un indicateur synthétique de concentration permettant de neutraliser le biais éventuel, dérivé de ce que l’on appelle l’indice d’Herfindahl (que je note EH), qui se lit comme suit : il varie entre 1% (concentration géographique maximale) et 100% (concentration géographique minimale).

Voilà ce que l’on obtient pour les quatre pays, à la date du 28 mars 2020 :

Etats-Unis Espagne France Italie
Nombre décès              2 026              6 528              2 314            10 023
C1 35.9% 45.2% 32.5% 59.3%
C2 45.2% 66.0% 62.2% 72.7%
EH 12% 19% 26% 13%

La concentration est relativement forte dans tous les pays, les valeurs les plus élevées sont observées pour les Etats-Unis et l’Italie, la valeur la moins élevée pour la France. Si le confinement fonctionne correctement dans les différents pays, on peut peut-être espérer maîtriser plus facilement la pandémie. On comprend également la nécessité d’une régulation nationale de l’offre de soin.

Je continue avec la présentation détaillée des résultats, pour l’Espagne d’abord :

Région

part de la région dans l’ensemble de la population

(1)

part de la région dans l’ensemble des décès

(2)

indice

(2)/(1)

Andalucía 18.0% 3.2%    0.18
Aragón 2.8% 1.4%    0.51
Principado de Asturias 2.2% 0.6%    0.29
Cantabria 1.2% 0.4%    0.32
Ceuta 0.2% 0.0%    0.08
Castilla y León 5.1% 5.8%    1.13
Castilla La Mancha 4.3% 8.3%    1.90
Canarias 4.7% 0.6%    0.13
Cataluña 16.1% 18.8%    1.17
Extremadura 2.3% 1.5%    0.67
Galicia 5.8% 0.9%    0.16
Islas Baleares 2.5% 0.4%    0.18
Región de Murcia 3.2% 0.3%    0.10
Comunidad de Madrid 14.2% 47.2%    3.34
Melilla 0.2% 0.0%    0.08
Comunidad Foral de Navarra 1.4% 1.3%    0.93
País Vasco 4.6% 4.1%    0.87
La Rioja 0.7% 1.0%    1.56
C. Valenciana 10.6% 4.1%    0.39

Comme pour la France et l’Italie, on observe une forte concentration géographique des décès, dans la région de Madrid en l’occurrence. Les deux premières régions en nombre absolu (région de Madrid et Catalogne) concentrent 66% des décès. A noter que l’indice de la Catalogne n’est pas parmi les plus élevés (Castilla la Mancha et la Rioja la devancent), mais comme cette région est très peuplée, elle pèse plus dans le nombre absolu de décès.

Pour les Etats-Unis, on obtient ce tableau :

Etat

part de l’Etat dans la population (%)

(1)

Part de l’Etat dans les décès (%)

(2)

indice

(2)/(1)

New York 5.9% 35.9%                                     6.06
Louisiana 1.4% 6.8%                                     4.77
Washington 2.3% 9.3%                                     4.00
Vermont 0.2% 0.6%                                     3.12
New Jersey 2.7% 6.9%                                     2.55
Michigan 3.0% 5.5%                                     1.80
Connecticut 1.1% 1.6%                                     1.50
Georgia 3.2% 3.4%                                     1.05
Massachusetts 2.1% 2.2%                                     1.03
District of Columbia 0.2% 0.2%                                     0.92
Colorado 1.8% 1.5%                                     0.87
Delaware 0.3% 0.2%                                     0.83
Indiana 2.1% 1.5%                                     0.75
Mississippi 0.9% 0.6%                                     0.71
Oklahoma 1.2% 0.7%                                     0.61
Illinois 3.9% 2.3%                                     0.60
Nevada 0.9% 0.5%                                     0.53
Oregon 1.3% 0.6%                                     0.50
Wisconsin 1.8% 0.8%                                     0.47
South Carolina 1.6% 0.7%                                     0.47
California 12.0% 5.4%                                     0.45
Alaska 0.2% 0.1%                                     0.44
Pennsylvania 3.9% 1.7%                                     0.43
Florida 6.5% 2.7%                                     0.41
Idaho 0.5% 0.2%                                     0.36
Ohio 3.6% 1.2%                                     0.35
Arizona 2.2% 0.7%                                     0.33
Kentucky 1.4% 0.4%                                     0.33
Rhode Island 0.3% 0.1%                                     0.31
Arkansas 0.9% 0.2%                                     0.27
Missouri 1.9% 0.5%                                     0.26
Virginia 2.6% 0.6%                                     0.25
New Hampshire 0.4% 0.1%                                     0.24
Kansas 0.9% 0.2%                                     0.22
North Dakota 0.2% 0.0%                                     0.21
South Dakota 0.3% 0.0%                                     0.18
Texas 8.8% 1.5%                                     0.17
Nebraska 0.6% 0.1%                                     0.17
Tennessee 2.1% 0.3%                                     0.17
Iowa 1.0% 0.1%                                     0.15
Montana 0.3% 0.0%                                     0.15
Minnesota 1.7% 0.2%                                     0.14
Maryland 1.8% 0.2%                                     0.13
Alabama 1.5% 0.2%                                     0.13
Maine 0.4% 0.0%                                     0.12
New Mexico 0.6% 0.0%                                     0.08
North Carolina 3.2% 0.2%                                     0.08
Utah 1.0% 0.0%                                     0.05
Hawaii 0.4% 0.0%                                          –
West Virginia 0.5% 0.0%                                          –
Wyoming 0.2% 0.0%                                          –

L’Etat de New-York concentre près de 36% des décès, soit plus de 6 fois ce qu’il pèse dans la population. Les deux premiers Etats en nombre absolu concentrent 45,2% des décès. La Californie, avec 110 décès, arrive en 6ème position en nombre absolu, mais bien en deçà pour l’indice.

Un enjeu pour les prochains jours/semaines : la concentration géographique de l’épidémie va-t-elle se maintenir ou se réduire ? Je vous présenterai quelques éléments de réponse demain je pense, pour le cas français au moins.

Covid 19, épisode 4 : une comparaison des géographies française et italienne

Petit billet pour explorer la géographie de l’épidémie de l’autre côté des Alpes, grâce à des données pour l’Italie disponibles ici.

Comme indiqué dans mon premier billet consacré au Covid 19, lorsque l’on brasse des données par territoire, il convient de rapporter le nombre de cas observés à la population pour neutraliser les différences de taille des territoires. J’ai donc récupéré les données sur les populations des régions italiennes sur Eurostat pour calculer le nombre de cas par habitant.

En rapportant les valeurs obtenues pour chaque région au résultat pour le pays dans son ensemble, on obtient un indice qui vaut 1 si la valeur de la région est la même que dans l’ensemble du pays, et une valeur supérieure à 1 si cette valeur est supérieure. Un indice de 2, par exemple, signifie que le ratio observé pour la région considérée est le double de celui observé en moyenne. Ou, dit d’une autre façon, que la région considérée pèse deux fois plus pour l’indicateur considéré que pour la population (c’est comme cela que je vais présenter les résultats). Je me concentre sur les données relatives aux décès cumulés observés à la date du 27 mars 2020.

Région part de la région dans la population nationale (%)
(1)
part de la région dans l’ensemble des décès (%)
(2)
indice

(2)/(1)

Lombardia 16.7% 59.1%                   3.5
Valle d’Aosta 0.2% 0.4%                   1.9
Emilia Romagna 7.4% 13.9%                   1.9
Marche 2.5% 3.7%                   1.5
Liguria 2.6% 3.6%                   1.4
P.A. Trento 0.9% 1.1%                   1.2
Piemonte 7.2% 6.2%                   0.9
P.A. Bolzano 0.9% 0.7%                   0.7
Veneto 8.1% 3.4%                   0.4
Friuli Venezia Giulia 2.0% 0.8%                   0.4
Abruzzo 2.2% 0.7%                   0.3
Toscana 6.2% 1.9%                   0.3
Molise 0.5% 0.1%                   0.2
Umbria 1.5% 0.2%                   0.2
Lazio 9.7% 1.3%                   0.1
Puglia 6.7% 0.8%                   0.1
Campania 9.6% 1.1%                   0.1
Sardegna 2.7% 0.2%                   0.1
Calabria 3.2% 0.2%                   0.1
Sicilia 8.3% 0.4%                   0.1
Basilicata 0.9% 0.0%                   0.0

La géographie de l’épidémie est fortement marquée, la Lombardie concentrant 59% des décès. Comme cette région concentre 17% des habitants, l’indice obtenu est de 3,5 : on observe 3,5 fois plus de décès dans cette région que ce que l’on observe pour l’Italie dans son ensemble.

L’Emilie-Romagne est dans une situation similaire (poids dans les décès supérieur au poids dans la population), mais moins marquée (indice « seulement » de 1,9). Le Piémont, en revanche, qui arrive en troisième position en termes de décès, présente un indice inférieur à 1.

En procédant de même à l’échelle des régions françaises, on obtient les résultats suivants :

Région part de la région dans la population nationale (%)
(1)
part de la région dans l’ensemble des décès

(2)

indice

(2)/(1)

Grand-Est 8.2% 32.9%                4.0
Corse 0.5% 1.0%                1.8
Bourgogne-Franche-Comté 4.1% 7.0%                1.7
Île-de-France 18.3% 29.0%                1.6
Hauts-de-France 8.9% 8.5%                0.9
Auvergne-Rhône-Alpes 12.0% 8.3%                0.7
Occitanie 8.8% 3.1%                0.3
Bretagne 5.0% 1.7%                0.3
Centre-Val de Loire 3.8% 1.3%                0.3
Provence-Alpes-Côte d’Azur 7.5% 2.4%                0.3
Pays de la Loire 5.7% 1.6%                0.3
Normandie 4.9% 1.2%                0.2
Nouvelle-Aquitaine 8.9% 2.1%                0.2
Martinique 0.5% 0.1%                0.1
Guadeloupe 0.6% 0.1%                0.1
Guyane 0.4% 0.0%                     –
La Réunion 1.3% 0.0%                     –
Mayotte 0.4% 0.0%                     –

Même si Grand Est concentre une part moins importante des décès que la Lombardie, son indice est encore supérieur. Les Hauts-de-France sont dans une situation similaire à celle du Piémont : nombre absolu de cas élevé mais, compte-tenu de la taille de cette région, l’indice reste inférieur à 1.

Dans le cas Italien comme dans le cas français, l’épidémie reste donc pour l’instant très concentrée géographiquement : 62% des décès sont situés dans les deux régions françaises les plus touchées (Grand Est et Ile-de-France), 73% dans le cas italien (Lombardie et Emilie-Romagne).