MOOC 5G – 2022

MOOC 5G : A ne pas rater.

Xavier Lagrange est professeur à l’institut IMT Atlantique ; il est responsable de l’équipe de recherche ADOPNET du département (Réseaux, Télécommunications et Services) de l’IRISA. Dans ce Mooc M Lagrange propose de nouvelles vidéos très pédagogiques sur le fonctionnement de la 5G.

Au cours de la semaine 2, M Lagrange et son équipe présentent l’architecture du réseaux 5G et les services attendus (5G SA).

La semaine 3, l’interface radio est présentée avec un rappel de l’interface radio 4G.

La semaine 4, les protocoles et procédures de gestions de flux sont abordés

La semaine 5, les mécanismes de sécurité permettent de comprendre les protections mises en œuvre pour l’authentification (AKA), le chiffrement et l’intégrité (CIA). Une présentation détaillée du SUCI est remarquable. Bien que très complexe, M Lagrange a réussi à expliquer simplement l’échange de clé, le calcul de la clé éphémère partagée et le calcul du SUCI.

La semaine 6, l’architecture Cloud Native est présentée (SBA et SBI)

La semaine 7, on découvre l’interconnexion entre réseaux et les fonctions de sécurités.

La formation est très intéressante (il existe aussi une formation sur la 4G) et l’approche très didactique et pédagogique.

Si vous ne vous êtes pas encore inscrit, cliquez sur le lien suivant :

https://www.coursera.org/learn/5g-principes-de-fonctionnement#instructors

Et bonne formation.

Master Objets Connectés / IoT de l’université de Poitiers (ouvert à l’alternance)

Le master Objets Connectés / IoT de l’université de Poitiers a pour objectif de former les étudiants aux nouveaux métiers pluridisciplinaires d’ingénierie de l’IOT (Internet Of Things). Les compétences développées dans cette formation répondent aux besoins actuels d’architectes logiciels et matériels sur toute la chaîne de transmission et de traitement dédiée aux objets connectés et intelligents. Les modules d’acquisition, d’analyse et de traitement des données, de vision, d’intelligence artificielle, d’électronique et d’informatique embarquée, de technologies sans fil, de réseaux et de cyber sécurité illustrent cette approche. Afin d’atteindre le niveau d’expérience recherché dans ces domaines, et en lien avec les nouvelles pédagogies, une partie importante de la formation est dédiée à la mise en œuvre pratique sur des cas d’usages proposés par nos partenaires industriels et notre laboratoire de recherche support XLIM.

Vous êtes étudiants, une entreprise/structure en recherche de stagiaires ou contrats d’alternance, ou autre contactez :

Clency.perrine@univ-poitiers.fr

www.sfa.univ-poitiers.fr/objetsconnectes/

Le réseau privé mobile de radiocommunication PMR – Private Mobile Radio

I- Introduction

Le réseau privé mobile Radio (PMR) ou Réseau Mobile Privatif (RMP) est utilisé par les services publics (collectivités, ministère de l’intérieur, sécurité publique) et les entreprises pour des besoins de résilience sur leur infrastructure et leur communications.

Aujourd’hui les réseaux PMR sont utilisés pour des besoins de :

  • communications mobiles extérieures à bande étroite (TETRA, DMR, GSM-R)
  • communications sans fils intérieures (DECT)
  • communications de données (WiFi privatif)
  • communication pour l’IoT (LoRAWAN, LTE-M, NB-IoT)

Les communications mobiles TETRA ont connu un grand succès avec les communications de terrain via le mode Talkie Walkie. Toutefois, le réseau TETRA n’offre qu’un faible débit de données et un nombre limité de terminaux ce qui ne répond plus au besoin d’aujourd’hui.

Les réseaux PMR 4G et PMR 5G présentent de nombreux avantages :

  • la prise en charge de la QoS;
  • la sécurisation des échanges et de l’infrastructure (ex : Stormshield);
  • une bonne couverture par station de base;
  • des gammes de smartphones durcis 4G (encore en nombre limité en 2022 pour la 5G);
  • la gestion des appels d’urgence, dénommés Missions critiques (MCx, Push To X – PMR à bande étroite);
  • la gestion de l’IoT avec pour la 5G la prise en compte d’une faible latence.

Selon les partenariats de Roaming, l’entreprise ou l’acteur public déploie un cœur de réseau dédié et des accès radios privés pour ses propres services de DATA et de voix

Les terminaux sont gérés par une plateforme OTA (Over The Air) afin de charger le profil des cartes SIM sur l’interface radio.

Avec la 4G/5G, les nouveaux services visés pour le réseau PMR sont :

  • Les services missions critiques : MCPTT (LTE Advanced Pro : En route vers la 5G)
  • Les applications collaboratives (communications enrichies WhatsApp,..)
  • Les services industrielle (entreprise 4.0) : IoT, robotique, maintenance prédictive, VR/AR/MR,
  • les services de données haut débit (image vidéo, reconnaissance faciale, … )

Une analyse du marché [1] montre que les réseaux PMR 4G/5G devraient connaitre une croissance mondiale estimée à 35% jusqu’en 2026 (et 20% ensuite). La figure 1 compare le réseau PMR 4G par rapport aux autres technologies réseaux PMR:

Figure 1 : Comparaison des solutions technologiques PMR [1]

II – Les bandes de fréquences

Actuellement, le ministère de la défense et le ministère de l’intérieur disposent de leur propre bande de fréquence ;

  • Le ministère de la défense dispose de la bande 40 (90 MHz de bande à 2,31 GHz – 2,4 GHz).
  • Le ministère de l’intérieur dispose des bandes 28 et 68 suivantes : 698 MHz – 703 MHz, 733 MHz- 736 MHz, 753 MHz – 758 MHz, 788 MHz – 791 MHz

Jusqu’au milieu des années 2010, les bandes de fréquences se situaient dans les bandes suivantes :

  • UHF : 380-470 MHz et 900 MHz (GSM-R)
  • VHF : 50 MHz, 60 MHz, 80 MHz, 160 MHz

En 2019, l’ARCEP a ouvert la bande B38 (2575 MHz à 2615 MHz) de 40 MHz de bande en mode TDD proposée pour la 4G mais qui pourra aussi couvrir la 5G.
Figure 2 : Les bandes de fréquence PMR en France en 2021

Pour la 5G, l’ARCEP va proposer les bandes suivantes

  • Bande 3,800 à 4,200 GHz,
  • Bandes dites « millimétriques » : 26 GHz.

L’accès radio est gérée par une station de base eNB en 4G ou gNB en 5G. L’alliance OPEN-RAN devrait faciliter, à partir de 2025, le déploiement de gNB PMR 5G.

Pour la 4G, l’eNB est classiquement composée d’une tête radio déportée (RRU/RRH) et d’une unité de traitement et de contrôle BBU. L’unité BBU est connectée au cœur de réseau.

Le cœur de réseau 4G ou 5G profite de la solution de virtualisation pour être déployé sur le Cloud ou sur une VM. Pour des raisons de résilience, il est préférable de dupliquer le coeur de réseau.

III- La Mission critique  MCPTT

L’application Mission Critique Push To Talk a initialement été normalisée par le standard 3GPP pour les réseaux  4G [3] avec comme objectif de maintenir le même niveau de sécurité, de résilience que la fonctionnalité Talkie Walkie du réseau TETRA.

Le service MCPTT prend en charge la communication entre plusieurs utilisateurs (un appel de groupe), et arbitre, pour chaque utilisateur, la permission de pouvoir prendre la parole via un mécanisme de contrôle (floor control) en cas de congestion.

Le service MCPTT permet aussi les appels privés entre deux utilisateurs du groupe.

Pour permettre la gestion des utilisateurs, le service MCPTT s’appuie sur deux facilitateurs de service :

  • Le service de proximité PROSE (Proximity Service Enabler)
  • Le service de gestion d’appels de groupe GCSE (Group Communication System Enabler)

Le service de proximité permet d’étendre la couverture du réseau 4G en utilisant le téléphone comme point relais d’une station de base ou comme station de base.

Le service de gestion d’appels de groupe permet la transmission d’un flux de 1 vers N via un mécanisme de multicast pour le trafic et de broadcast pour la signalisation.

La fonction MCPTT utilise le service multimédia fourni par le réseau IMS (IP Multimedia Sub-system), le service de proximité ProSe, le service de communication de groupe GCSE fourni par le réseau eMBMS et le service de transfert des données fourni par le réseau de mobiles EPS.

Bibliographie

[1] http://ld-expertise.com/wp-content/uploads/2021/09/ETUDE-DE-MARCHE-RMP_2021.pdf

[2] Network 2020: Mission Critical Communications : https://www.gsma.com/futurenetworks/wp-content/uploads/2017/03/Network_2020_Mission_critical_communications.pdf

[3] LTE; Mission Critical Push to Talk (MCPTT) over LTE; Stage 1 : https://www.etsi.org/deliver/etsi_ts/122100_122199/122179/13.03.00_60/ts_122179v130300p.pdf

SDT – Small Data Transmission (3ème)

Procédure d’accès aléatoire EDT/RA-SDT

La spécification R.15 propose une évolution de la procédure d’accès aléatoire nommée EDT Early Data Transmission. En cours de procédure d’accès aléatoire, le mobile UE peut transmettre des données dans le message 3 dont la taille est comprise entre 328 et 1000 bits et le message 4 est utilisé pour la transmission descendante [4]. La taille TBS (Transport Block Size) est toutefois imposée par l’accès radioélectrique RAN dans un message 2 RAR.

La procédure MO-EDT (Mobile Originating EDT) permet au mobile UE de transmettre des données lorsque la couche haute demande l’établissement d’une connexion RRC ou l’activation de la connexion RRC (resume) pour la transmission de données (MO Data). La cause de l’établissement n’est ni un SMS, ni de la signalisation mais la transmission de données. La procédure MO-EDT est réservée aux terminaux NB-IoT.

Pour activer l’EDT, le mobile UE informe la station de base qu’il désire transmettre au cours du message 3 en utilisant une séquence PRACH particulière (NPRACH pour le NB-IoT) dans le message 1.

Dans le message 3, le mobile UE transmet la requête RRCEarlyData Request avec le message NAS encapsulé (S-TMSI, establishmentCause, dedicatedInfoNAS).

Le message EDT est transmis en clair sur l’interface radio si le mobile était à l’état RRC_IDLE ou chiffré en utilisant le contexte de sécurité AS si le mobile était à l’état RRC_INACTIVE. Le message NAS est quant à lui chiffré selon les clés de sécurités NAS connues au niveau du mobile UE et du cœur de réseau (MME/AMF).

Figure 8 : Protocole de transmission EDT

Procédure de transmission pré-configurée PUR (Preconfigured Uplink resource)

La spécification 3GPP R.16 PUR [5,6] propose de réduire davantage la signalisation par rapport à la procédure EDT en supprimant les messages 1 et 2 de la procédure d’accès aléatoire.

Le mobile dispose ainsi d’une pré-configuration lorsqu’il est à l’état CONNECTE lui permettant de connaître :

  • Les spécifications de ressources (UL-Grant) ;
  • Le schéma de modulation et de codage MCS ;
  • Le nombre de répétition PUSCH ;
  • L’identifiant radio RNTI à utiliser : PUR C-RNTI

La configuration du mobile par un message RRC est déclenché soit par le mobile avec une requête PUR Configuration Request ou par l’eNB ou le réseau à travers un message RRC.

Dans le cas d’étude qui nous intéresse, le mobile étant statique la valeur du Timing Advanced (TA) ne change pas, dans le cas ou le mobile conserve la même cellule de service (Serving Cell). Comme évoqué dans l’introduction, le changement de cellule peut intervenir en cas de défaillance de la station de base lorsque le mobile est en écoute.

L’allocation de ressource de type 5, uniquement applicable pour les terminaux BL/CE est configurée à partir du paramètre PUR-Config [6].

La première transmission PUSCH PUR est séquencée par un message RRC, les messages subséquents sont ordonnancés par un message DCI.

Une étude plus importante doit être menée pour connaitre les conditions de validité de cette procédure.

 Etat INACTIVE CONNECTED

L’état RRC INACTIVE a été introduit de manière à conserver au niveau de la station de base et du mobile UE le contexte AS (Access Stratum), dans le but de réduire la consommation énergétique et le nombre de messages échangés entre le mobile UE et la station de base.

La spécification R.13 introduit deux nouveaux messages : RRC SUSPEND et RRC RESUME pour modifier l’état du mobile UE au niveau du mobile et de la station de base.

Dans l’état RRC INACTIVE, le mobile et la station de base suspendent leur connexion radioélectrique mais le contexte AS est conservé au niveau du mobile et de la station de base. Le cœur de réseau considère que le mobile est toujours à l’état RRC CONNECTED. La sélection de cellule est gérée par le mobile mais le paging est géré par la station de base.

Figure 11 : Les états du mobile UE 4G/5G

Figure 10 : Grafcet des états du mobile

Lorsque le mobile UE est à l’état RRC INACTIVE, il dispose d’un identifiant I-RNTI permettant d’identifier le contexte AS et permettant à la station de base de s’adresser au mobile UE via les messages de signalisation RRC, mais l’identifiant I-RNTI n’est pas utilisé pour embrouiller les bits du CRC.

Il y a deux formats I-RNTI :

  • Un format court de 24 bits
  • Un format long de 40 bits

Le mobile UE utilise l’un des deux formats en fonction de l’information portée par le drapeau « useFullResumeId » porté par le message SIB1.

Figure 11 : Les informations concernant l’identifiant I-RNTI portées par le SIB1

L’identifiant I-RNTI est utilisé pour notifier le mobile UE d’une procédure de paging ou pour mettre à jour la localisation (RNA Update). L’identifiant I-RNTI n’est pas utilisé lors de la procédure PRACH.

Procédure

Figure 12 : La procédure d’activation de lien RRC (Passage de l’état RRC INACTIVE à l’état RRC Connected)

RRCRESUMEREQUEST ou RRCRESUMEREQUEST1

Quand le mobile UE souhaite transmettre un message, il déclenche la procédure d’accès aléatoire puis demande le rétablissement de la connexion radioélectrique via le message RRCResumeRequest ou le message RRCResumeRequest1. Le mobile émet la requête RRCResumeRequest1 si le SIB1 contient l’information useFullResumeID pour transmettre l’identifiant I-RNTI sur 40 bits. Sinon, le mobile émet la requête RRCResumeRequest avec l’identifiant SHORT-IRNTI.

UE CONTEXT RESUME REQUEST

La procédure UE CONTEXT RESUME REQUEST permet à l’eNB d’indiquer au cœur de réseau (MME/AMF) que le mobile UE souhaite reprendre la connexion RRC suspendue ou pour permettre l’émission d’un message EDT.

5G-NR : RA-SDT et CG-SDT

La procédure RA-SDT est similaire à la procédure EDT lorsque le mobile est soit à l’état de veille, soit à l’état inactif en proposant de transmettre le signal en 4 étapes ou en 2 étapes.

La procédure CG-SDT est similaire à la procédure PUR lorsque le mobile est à l’état inactive.

L’une et l’autre sont en cours de spécification dans la R.17 [7] et il y a un manque d’informations actuellement sur la procédure. De plus, la mise en œuvre de la R.17 radio ne sera pas réalisée avant 2024/2025.

La configuration du SDT s’appuie sur la sélection de cellule à partir de la mesure du niveau de puissance RSRP. Or en cas de brouillage, le niveau de puissance augmente. Ainsi, même si la valeur de TA est correcte, le risque de re-sélection de cellule de part la puissance RSRP va générer la modification du TA ou l’expiration du timer TA.

Conclusion

Pour passer du mode de veille au mode connecté, le terminal UE émet une séquence aléatoire dont les caractéristiques (racine de la séquence) et l’instant d’émission est transmise par la station de base au mobile UE.

Concernant l’émission de la séquence aléatoire, la sous-trame de transmission est définie par le message SIB2.

La procédure d’accès aléatoire à 4 messages est impossible car il est nécessaire de connaitre l’identifiant T-RNTI.

La procédure de transmission de message SDT à 2 messages (PUR ou RA-SDT/CG-SDT) permet de transmettre des données sur deux messages à partir de la connaissance de l’identifiant radio RNTI (messages 1 et 2 ne sont plus transmis)

 

Ressources Bibliographiques

[1] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.1-2: Frame structure type 1 random access configuration for preamble formats 0-3

[2] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3

[3] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-2 NCS for preamble generation (preamble formats 0-3)

[4] Andreas Höglund, Dung Pham Van, Tuomas Tirronen, Olof Liberg, Yutao Sui, and Emre A. Yavuz, “3GPP Release 15 Early Data Transmission”, 2018, IEEE Communications Standards Magazine ( Volume: 2, Issue: 2, JUNE 2018), p90-96, https://doi.org/10.1109/MCOMSTD.2018.1800002

[5] Andreas Höglund, G. A. Medina-Acosta, Sandeep Narayanan Kadan Veedu, Olof Liberg, Tuomas Tirronen, Emre A. Yavuz, and Johan Bergman , 3GPP Release-16 Preconfigured Uplink Resources for LTE-M and NB-IoT

[6] 3GPP TS 36.213, R.16.8.0 : Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

[7] 3GPP TS 38.321, R.17.0.0 (mars 2022), MAC protocol Specification.

SDT – Small Data Transmission (2ème)

Procédure d’accès aléatoire

La procédure d’accès aléatoire a pour objectif d’informer la station de base que le mobile souhaite être contrôlée par la station de base. Le mobile UE établit une procédure d’accès aléatoire dans les cas suivants :

  • Lorsque le mobile UE s’allume (ou en sortant du mode avion) ;
  • Lorsque le mobile UE met à jour sa localisation ;
  • Lorsque le mobile UE souhaite l’établissement d’une session PDU ou d’une connectivité PDN ;
  • En cas de H.O (procédure d’accès aléatoire sans contention).

Nous allons limiter notre étude au cas où le mobile souhaite l’établissement d’une connectivité PDN.

Figure 4 : La procédure d’accès aléatoire

Le message 1 émit par le mobile est transmis avec une puissance initiale P1 estimée à partir du signal de synchronisation reçu (mesure RSRP). En cas de non réponse, le mobile incrémente sa puissance d’émission. Le mobile transmet le préambule et l’identifiant de 16 bits RA-RNTI, lequel est calculé de la manière suivante :

Dans le cas du NB-IoT, les sous-porteuses sont espacées de 3,75 kHz ce qui permet d’avoir 48 sous-porteuses dans une RB de 180 kHz. Afin de réduire les risques de collision, le préambule est transmis sur 4 sous porteuses choisies pseudo-aléatoirement parmi 12 sous-porteuses consécutives via un motif de Frequency Hopping.

La station de base scrute dans les sous-trames correspondantes (cf. Table 3) la réception de préambules. En cas de détection d’un préambule, la station de base émet un message RAR Random Access Response dans le canal physique PDSCH en indiquant la présence du message RAR par une information de contrôle DCI_1 émise dans le canal PDCCH. L’information DCI_1 portée par le canal PDCCH est embrouillée par l’identifiant RA-RNTI. Le mobile UE attend la réponse de la station de base dans une fenêtre temporelle. La durée de la fenêtre temporelle n’est pas définie dans la norme mais est diffusée dans le message SIB via le paramètre rar-WindowLength IE.

Le RAR contient :

  • La valeur du préambule (RAPID : Random Access Preamble Id)
  • Le paramètre de Timing Advanced.
  • Les informations d’ordonnancement permettant d’indiquer au mobile UE les ressources radioélectriques que ce dernier devra utiliser pour l’émission du message subséquent ainsi que le schéma de modulation MCS.
  • L’allocation de ressource (UL Grant) pour la réponse du mobile vers la station de base
  • L’identifiant radioélectrique temporaire T-RNTI

Le mobile UE conserve la valeur T-RNTI et transmet son message 3 RRC Connection Request au niveau des ressources tempo-fréquentielles indiquées par la station de base dans le message 2 (UL Grant/RB Assignment). Le message est court (80 octets) et contient l’identité du mobile (TMSI ou une valeur aléatoire). L’identité radioélectrique T-RNTI transmis dans le message précédent est utilisé pour embrouiller le CRC du signal PUSCH montant.

Le message 4 (RRC Connection Setup) est utilisé pour lever la contention. En effet, si 2 mobiles UE ont transmis dans l’étape 3 son identifiant TMSI ou une valeur aléatoire (en estimant de droit que le message 2 lui était destiné), la station de base transmet l’allocation de ressource pour les échanges suivants à un mobile défini par son identifiant, c’est-à-dire la valeur TMSI ou la valeur aléatoire transmis dans le message 3. Le T-RNTI échangé dans le message 3 devient le C-RNTI à moins que l’UE disposait déjà d’un C-RNTI.

Le dernier message RRC Connection Setup Complete permet au mobile de valider le passage en mode connecté. Le message contient l’identité du PLMN sélectionné et un message NAS à destination du cœur de réseau.

La figure 7 présente le diagramme de machine d’état au niveau du mobile UE (figure 7a) et de la station de base (figure 7b).

Figure 5 : Le diagramme de machine d’état mobile UE (a) et station de base (b)

Les messages transmis portent les informations suivantes :

Figure 8 : L’échange de messages pour la procédure RAR

Figure 9 : Message 2 de la procédure d’accès aléatoire

La suite est récupérée sur Sharetechnote :

 

  • MAC Subheaders
    • E: The Extension field is a flag indicating if the MAC subPDU including this MAC subheader is the last MACsubPDU or not in the MAC PDU.
      • E field is set to “1” to indicate at least another MAC subPDU follows
      • E field is set to “0” to indicate that the MAC subPDU including this MAC subheader is the last MAC subPDU in the MAC PDU
    • T: The Type field is a flag indicating whether the MAC subheader contains a Random Access Preamble ID or a Backoff Indicator.
      • The T field is set to “0” to indicate the presence of a Backoff Indicator field in the subheader (BI)
      • The T field is set to “1” to indicate the presence of a Random Access Preamble ID field in the subheader (RAPID)
    • R: Reserved bit, set to “0”
    • BI: The Backoff Indicator field identifies the overload condition in the cell and its size is 4 bits to represent 16 possible index. Index value and corresponding Backoff time value is shown in below table

    • RAPID: The Random Access Preamble IDentifier field identifies the transmitted Random Access Preamble. The size of the RAPID field is 6 bits. If the RAPID in the MAC subheader of a MAC subPDU
      corresponds to one of the Random Access Preambles configured for SI request, MAC RAR is not included in the MAC subPDU.
  • MAC RAR Payload
    • R: Reserved bit, set to “0”;
    • Timing Advance Command: The Timing Advance Command field indicates the index value TA used to control the amount of timing adjustment that the MAC entity has to apply in TS 38.213 [6]. The size of the Timing Advance Command field is 12 bits
    • UL Grant: The Uplink Grant field indicates the resources to be used on the uplink i.e. Msg3. The size of the UL Grant field is 27 bits and content of UL grant is shown in below.

      • Frequency Hopping Flag
        • If the value of the frequency hopping flag is 0, the UE transmits the PUSCH without frequency hopping; otherwise, the UE transmits the PUSCH with frequency hopping.
      • MCS: The UE determines the MCS of the PUSCH transmission from the first sixteen indexes of the applicable MCS index table for PUSCH as described in 3GPP specification 38.214
      • TPC:The TPC command value is used for setting the power of the PUSCH transmission, and  is interpreted according to below table.
          • CSI request: This field a is reserved.
        •  Temporary C-RNTI: The Temporary C-RNTI field indicates the temporary identity that is used by the MAC entity during Random Access. The size of the Temporary C-RNTI field is 16 bits.

 

Ressources Bibliographiques

 

[1] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.1-2: Frame structure type 1 random access configuration for preamble formats 0-3

[2] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3

[3] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-2 NCS for preamble generation (preamble formats 0-3)

[4] Andreas Höglund, Dung Pham Van, Tuomas Tirronen, Olof Liberg, Yutao Sui, and Emre A. Yavuz, “3GPP Release 15 Early Data Transmission”, 2018, IEEE Communications Standards Magazine ( Volume: 2, Issue: 2, JUNE 2018), p90-96, https://doi.org/10.1109/MCOMSTD.2018.1800002

[5] Andreas Höglund, G. A. Medina-Acosta, Sandeep Narayanan Kadan Veedu, Olof Liberg, Tuomas Tirronen, Emre A. Yavuz, and Johan Bergman , 3GPP Release-16 Preconfigured Uplink Resources for LTE-M and NB-IoT

[6] 3GPP TS 36.213, R.16.8.0 : Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

[7] 3GPP TS 38.321, R.17.0.0 (mars 2022), MAC protocol Specification.

SDT – Small Data Transmission

Introduction

L’Internet des Objets a poussé la 3GPP a imaginé des protocoles dédiés pour des transmissions à faible volumétrie de données SDT (Small Data Transmission).

Le réseau 4G propose deux solutions SDT nommées EDT (Early Data Transmission) et la PUR (Preconfigured Uplink Resource).

Le réseau 5G propose deux autres solutions SDT nommées RA-SDT et CG-SDT. La technologie RA-SDT est proche de la solution EDT et la technologie CG-SDT est proche de la solution PUR.

Cet article est la continuité de la présentation de l’IoT Cellulaire (https://blogs.univ-poitiers.fr/f-launay/2017/05/28/mtc-le-reseau-m2m-iot-sur-la-4g-1ere-partie/) et je vais reprendre l’article sur le canal PRACH  : https://blogs.univ-poitiers.fr/f-launay/2020/05/02/etablissement-de-la-connexion-radioelectrique-comparaison-4g-et-5g/

Etude du signal d’accès aléatoire

Le signal d’accès aléatoire sur l’interface radioélectrique LTE est généré par le mobile selon la formule suivante :

La séquence Xu,v est une séquence de Zadoff-Chu (ZC). La séquence de PRACH s’appuie sur une séquence de ZC dans le domaine fréquentiel et la formule précédente permet d’appliquer la transformation du signal vers le domaine temporel.

La liste des préambules est transmises à l’UE via le message d’information système SIB2. La station de base propose une liste voire deux listes par cellule, chaque liste contient 64 préambules.

Un préambule racine est une séquence pseudo-aléatoire de Zadoff-Chu (ZC) qui est définie par la valeur de la racine. Les préambules de la liste sont obtenus à partir d’un décalage cyclique Cv du préambule racine.

Un nombre fixe de 64 préambules est alloué pour chaque cellule et en fonction de la longueur de décalage cyclique NCS, une ou plusieurs séquences racine d’accès aléatoire sont nécessaires par cellule pour générer les 64 préambules.

PREAMBULE PRACH (Accès Aléatoire)

Le préambule PRACH est constitué d’un préfixe cyclique de longueur TCP et d’une séquence de longeur TSEQ.

Figure 1 : Le préambule PRACH

Les longueurs TCP et TSEQ  dépendent de la structure de la trame (type 1 : FDD ou type 2 : TDD) et de la configuration définie au niveau de la couche RRC de l’accès aléatoire selon l’un des quatre formats ci-dessous :

Table 1 : La configuration de la séquence PRACH

Il convient de noter que durée de la séquence d’apprentissage définit la couverture de la cellule pour estimer correctement l’avance de synchronisation. Si eNodeB reçoit des préambules au-delà de la plage de cellules définie, l’estimation de l’avance temporelle sera erronée et l’accès aléatoire, la procédure échouera, ce qui entraînera de nouvelles tentatives de la part de l’UE.

Table 2 : La couverture de la cellule

 Les préambules par cellule sont divisés en deux sous-ensembles

La transmission du préambule PRACH est déclenché soit par la couche MAC (demande d’accès avec contention), soit par la couche RRC de la station de base (demande d’accès sans contention). L’étude porte sur la demande d’accès avec contention.

Lorsque le préambule est déclenché par la couche MAC, il est contraint à des ressources tempo/fréquentielle correspondant au numéro de la sous-trame dans une trame et au numéro du bloc de ressource. Les ressources tempo-fréquentielles autorisées sont transmis au mobile par le message SIB2 (cf. annexe):

  • L’instant de transmission est défini via l’index PRACH-Configuration. Le numéro d’index de configuration PRACH, sur 6 bits (valeurs 0 à 63), permet de savoir dans quelle(s) sous-trames le PRACH peut être transmis sur chaque sous trame ou uniquement sur les sous trames paires
  • Le décalage prach-FrequencyOffset détermine la position du bloc de ressource (PRB) contenant la séquence dans le domaine fréquentiel

Table 3 : Table de configuration de l’index de configuration PRACH  [1]

PREAMBULE NPRACH (Accès Aléatoire)

A l’instar du LTE, les informations sur la procédure d’accès aléatoires sont transmises via le SIB2. On trouve la périodicité des demandes d’accès aléatoires, l’instant de transmission, la première sous-porteuse et le nombre de sous-porteuses allouées à la demande NPRACH, le nombre de répétition de la transmission du préambule.

La figure suivante est extraite du site : https://www.sharetechnote.com/html/Handbook_LTE_NB_rach.html


Figure 2 : Les sous porteuses NPRACH (informations SIB2)

Le signal NPRACH est donc transmis dans les ressources tempo-fréquentielles spécifiées dans le message SIB2.

Figure 3 : La transmission du NPRACH (exemple)

Dans le cas du NB-IoT, il n’y a que deux formats de préambules. Les préambules sont toujours composées d’un préfixe cyclique CP et d’une séquence.

Figure 4 : Comparaison des préambules entre le l’interface LTE et l’interface NB-IoT [1]

 La séquence du préambule PRACH/NPRACH

La séquence du préambule PRACH/NPRACH est issue du générateur de Zadoff-Chu :

Avec u, la racine de Zadoff-Chu,  la longueur de la séquence (en général 839)

La station de base transmet au mobile un index de racine. La correspondance entre l’index et la racine de Zadoff-Chu est indiquée dans la table 4.

Les séquences cycliques sont calculées à partir de

Table 4 : La correspondance entre l’indice de la séquence RACH et la racine de Zadoff-Chu [2]

La valeur de Cv est calculée par l’équation suivante :

La valeur de NCS est définie par la table 4 à partir de la valeur ZeroCorrelationZoneConfig transmise dans le message SIB2

Figure 5 : Le message SIB2

Table 5 : Les valeurs de NCS [3]

Il y a une ou au plus deux listes de 64 séquences par cellule. Les 64 séquences d’une liste sont extraites à partir de tous les décalages cycliques possible de la séquence racine (root). La valeur racine est transmise par la station de base via le SIB2 dans le message RACH_ROOT_SEQUENCE (pour la 1ère liste de 64 séquence) et dans le message ROOT_SEQUENCE_INDEX_HI si une deuxième liste est gérée.

 

Ressources Bibliographiques

 

[1] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.1-2: Frame structure type 1 random access configuration for preamble formats 0-3

[2] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3

[3] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-2 NCS for preamble generation (preamble formats 0-3)

[4] Andreas Höglund, Dung Pham Van, Tuomas Tirronen, Olof Liberg, Yutao Sui, and Emre A. Yavuz, “3GPP Release 15 Early Data Transmission”, 2018, IEEE Communications Standards Magazine ( Volume: 2, Issue: 2, JUNE 2018), p90-96, https://doi.org/10.1109/MCOMSTD.2018.1800002

[5] Andreas Höglund, G. A. Medina-Acosta, Sandeep Narayanan Kadan Veedu, Olof Liberg, Tuomas Tirronen, Emre A. Yavuz, and Johan Bergman , 3GPP Release-16 Preconfigured Uplink Resources for LTE-M and NB-IoT

[6] 3GPP TS 36.213, R.16.8.0 : Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

[7] 3GPP TS 38.321, R.17.0.0 (mars 2022), MAC protocol Specification.

La spécification O-RAN : le decoupage 7.2

Dans cet article, nous allons nous intéresser à la spécification O-RAN et plus particulièrement à la partie de découpage de la couche basse LLS (Low Layer Split) c’est-à-dire à la séparation des fonctions entre l’unité radio RU et l’unité distribuée DU. Il existe plusieurs options numérotées de 1 à 8 décrivant un découpage entre les fonctionnalités intégrées à l’unité RU (Radio Unit), DU (Distributed Unit) et CU (Central Unit) faisant ainsi apparaitre de nouvelles interfaces (fronthaul/midhaul/backhaul).

Figure 1 : Le découpage radioélectrique et les interfaces

L’option 7.2 propose un découpage de la couche physique basse (LLS ) au niveau du RU et la couche physique haute au niveau du DU. Elle est souvent associée à l’option 2 pour le CU.

 

Figure 2 : L’architecture protocolaire de la station de base et l découpage des fonctions radio

Le découpage a un impact sur les performances de transmission :

Figure 3 : Le découpage et la qualité de service

L’interface entre l’unité RU et DU est nommée fronthaul et les données utilisateurs ainsi que la manière dont les données seront émises (mode de transmission) sont transportées par un bus série eCPRI. Pour pouvoir gérer les données, le fronthaul transporte également une couche de gestion et une synchronisation.

Figure 4 : L’interface Open-Fronthaul [1]

La transmission des données du plan de contrôle et le plan utilisateur entre l’unité O-RU et l’unité O-DU est gérée au niveau de la couche 2 avec un service l2VPN VPWS ou eVPN VPWS, les données du plan de gestion sont transportées par le protocole IPv4 ou IPv6.

Figure 5 : Le transport des plans de données et de gestion entre le DU et le RU

L’unité radio converti le signal numérique en signal radio et inversement. Les fonctionnalités dédiées à l’O-RU pour le découpage O-RAN version 7.2 :

  • Synchronisation (GPS/IEEE 1588) et transport Fronthaul (eCPRI)
  • Gestion de la couche physique basse (FPGA ou ASIC)
  • Front end (radio et numérique) : Convertisseur et pre-distorsion, amplificateurs

Figure 6 : l’architecture physique de l’O-RU [2]

Pour résumer, voici les principaux avantages et inconvénient du découpage des fonctions :

Figure 7 : Les avantages et inconvénients du découpage (source CISCO)

Le découpage 7.2 présente quatre avantages :

  1. Le transfert des données du plan utilisateur correspond à des éléments de ressources ce qui permet de gérer la correspondance des données (RE Mapping) au niveau du DU et limite le nombre de message de contrôle vers le RU ;
  2. L’adaptation de la bande de transport des données est basée sur le nombre de flux (stream) et non sur le nombre d’antennes :
  3. La gestion des faisceaux peut être numérique/analogique ou hybride.
  4. La simplification de la gestion de l’interférence intercellule ICIC et de la coordination multipoint (COMP) qui est gérée au niveau de l’unité DU

De plus, concernant le découpage 7.2, deux modes distincts de fonctionnement ont été définis selon que la précodage est situé au niveau de l’O-RU ou de l’O-DU

  • O-RU catégorie A

Le précodage est réalisé au niveau du DU. L’interface fronthaul transporte des flux séparés spatialement (stream). Cela peut nécessiter une charge plus élevée par rapport au transport d’une couche. Le Beamforming Numérique et analogique sont optionnels

  • O-RU catégorie B

Le précodage est réalisé au niveau du RU. L’interface fronthaul transport une couche réduisant ainsi la charge de la payload par rapport à la cat A mais le codeur est plus complexe. Le Beamforming Numérique et analogique sont optionnels

Pour comprendre la différence entre les deux catégories, il est intéressant de reprendre le schéma d’une chaîne de transmission MIMO :

Figure 7 : le synoptique d’une chaîne de transmission MIMO

Une couche est définie comme un chemin d’entrée de codage et de modulation vers le codeur MIMO. Un flux est défini comme la sortie de l’encodeur MIMO qui est ensuite traitée via la formation de faisceau ou le bloc de précodeur.

Figure 8 : Les deux catégories A/B du découpage radio fonctionnelle 7.2 [3]

La catégorie A permet de simplifier la conception de la partie radio (figure 8), laquelle n’a pas à gérer la matrice de précodage sur les flux.

L’exemple suivant (figure 4) présente la cas du MIMO. Figure 9: Découpage fonctionnel 7.2

A travers le plan de contrôle C-plane, l’unité O-DU informe l’unité O-RU du traitement à accomplir en transmettant le précodage a effectuer.

Figure 10 : La gestion du BeamForming selon la matrice de précodage calculée au niveau de l’unité O-DU[3]

 A partir de la solution XILINX [2], nous allons voir le découpage fonctionnel de l’unité O-RU cat B connectée à une antenne massive MIMO 64T64R.

L’unité O-RU est composée de 5 sous unités :

  • Une sous unité d’interface ISU (Interface SubUnit)
  • Quatre sous unité radio RSU (Radio SubUnit)

L’unité ISU reçoit des trames eCPRI via l’interface ethernet, et récupère la payload, c’est-à-dire les symboles I/Q. Les symboles sont multipliés par la matrice de précodage H18×64 permettant de générer 64 flux qui seront répartis sur les 4 sous unités radio RSU.

Chaque RSU traite en parallèle les 16 flux en réalisant l’IFFT sur le signal I/Q et en ajoutant le préfixe cyclique, puis une calibration, et un premier convertisseur en fréquence (DUC : Digital Up Converter) et une pré-distorsion (PDP) et/ou une réduction du facteur crête (CPR Crest Factor Reduction) est effectuée avant amplification.

Figure 11 : Le synoptique et l’implémentation Xilinx du O-RU

La partie antennaire est composée de brin rayonnants avec deux polarités, chaque RSU gère un panneau antennaire. L’antenne est constituée de 4 panneaux.

Sur la figure 12, il y a 128 éléments d’antennes pour 64 émetteurs/récepteurs (transceiver 64T64R) en connectant deux éléments d’antennes de même polarité au même port d’antenne.

Figure 12 : Antenne Massive MIMO avec 128 éléments rayonnants

 

[1] https://www.youtube.com/watch?v=KAW4LHK31Ek
[2] https://www.techplayon.com/o-ran-open-radio-unit-o-ru-reference-architecture/
[3] https://online-events.keysight.com/keysight-technologies7/Massive-MIMO-O-RAN-Radio-Units-O-RU-Design-and-Conformance-Test-Challenges?show_live_page=true&add_to_calendar=true&bmid=4f5ae43d7e8c

 

 

Du Maillage de service au Service Communication Proxy SCP

  1. Introduction : du SOA aux micro-services

L’évolution majeure entre le réseau 4G-CUPS et le réseau 5G repose sur le choix d’une architecture orientée service (demandeur de services/fournisseur de services). Les fonctions réseaux sont des composantes logicielles (NF : Network Function) ré-utilisables, qui échangent des informations les unes vers les autres à travers une interface de service SBI (Service Based Interface).

Les services sont exposés en utilisant des protocoles standards (SOAP, Thrift, JSON) permettant d’imposer le format des messages échangés. Dans le cas de la 5G, le format des données est le JSON et le protocole d’échange se fait en HTTP2. Chaque service récupère, crée ou modifie une ressource. L’écriture se fait en utilisant les commandes POST ou PUT et la lecture en utilisant la commande WGET.

 

Une composante réseau logicielle (NF) est une unité autonome qui réalise une ou plusieurs tâches.

 

Chaque fonction est conçue pour réaliser une tâche ou des tâches précises comme récupérer des informations (exemple : l’identité du mobile lors de son attachement) ou exécuter une opération (exemple : mettre en œuvre un tunnel). Une fonction contient le code logiciel et les données nécessaire pour réaliser la liste des tâches associées à cette fonction.

 

Dans une architecture orientée services, les services communiquent entre eux via un système de couplage faible. Le couplage faible permet de réduire la dépendance entre les éléments du réseau, ce qui permet d’accélérer les mises à jour de fonctionnalité du réseau pour répondre à de multiples cas d’usages (Segments verticaux du marché).

Ainsi, par rapport aux entités fonctionnelles monolithiques du cœur de réseau 4G (cf. https://blogs.univ-poitiers.fr/f-launay/2021/02/26/architecture-sba-du-reseau-5g-microservices-et-soa/), l’architecture basée sur les services permet :

  • Une plus grande flexibilité et une innovation plus rapide : la ré-utilisation des fonctions accélère la mise en production d’une application car les développeurs utilisent des lignes de codes déjà exploitables
  • Une ouverture vers des nouveaux segments (agriculture, entreprise, …) par le biais d’exposition de service (API ouvertes)
  • Une maintenance et une évolution facile : les services étant autonomes (couplage lâche), il est plus facile de les modifier sans impacter le réseau, ou de créer des fonctions évoluées pour des solutions innovantes tout en maintenant les précédentes versions.

Le concept SOA est un des pilier du Cloud Computing. Le Cloud Computing porte l’architecture SOA à une échelle plus importante (en comparaison, le Cloud Computing est au WAN ce que le SOA est au LAN).

Plus précisément, le Cloud Computing exploite des composantes logicielles pouvant communiquer entre eux sans états (stateless) nommées micro-services. Le langage de programmation d’un micro-service est indépendant des autres micro-services.

L’usage des micro-services est grandement facilité par les techniques de conteneurisation. Les micro-services faiblement couplés sont déployés dans des conteneurs et connectés via des API ou via un réseau de services maillé (MESH Service) pour le routage des messages.

Lorsque le nombre de micro-service augmente, la gestion des communications entre chaque micro-service se complexifie. Le premier rôle du maillage de service (MESH Service) est de gérer l’échange très important des données entre les micro-services.

L’architecte 5G est une architecture basée sur le service (SBA : Service Base Architecture). L’architecture SBA fournit une architecture orientée services (SOA) pour héberger des composants de plan de contrôle distincts de différents fournisseurs avec des cycles de développement disparates qui pourraient facilement inter fonctionner et interagir pour fournir un sous-système 5G complet ou une offre de services.

Avec l’architecture SOA et SBA, de nombreuses fonctions réseaux sont lancées, avec un nombre d’instances permettant de prendre en charge le trafic de signalisation. A la différence du SOA, l’architecture SBA introduit la fonction NRF qui est un annuaire listant les instances déployées : chaque instance d’une fonction de réseau annonce sa disponibilité à la fonction NRF avant d’initier une connexion est-ouest et participer à la livraison d’une application ou d’un service plus important.

Figure 1 : L’architecture SBA et la fonction de découverte NRF

Toutefois, à l’instar du SOA, la difficulté est la répartition de charge de trafic de signalisation entre les fonctions.

 

2. Le maillage de service – Service MESH

Un service MESH a pour objectif de contrôler l’échange des données de services partagées entre les instances logicielles (micro-service ou fonctions NF).

Un micro-service est conçu pour échanger des données au niveau applicatif. Le service MESH introduit une couche d’infrastructure dédiée en intégrant dans l’application des PROXYS nommés SIDECAR (imaginez le sidecar d’une moto pour prendre en charge non pas une personne mais un service) afin d’optimiser l’échange de données.

Avec le maillage de service, les requêtes s’effectuent à travers des PROXYS implémentés en sortie des micro-services.

Figure 2 : Modèle SideCar [1]

Sans Sidecar, la composante logicielle devait compiler une bibliothèque de communication spécifique au langage pour gérer la découverte de services, les routages et les exigences de communication non fonctionnelles au niveau applicatif (couche 7).

Figure 3 : De kubernetes au Maillage de services [2]

Le maillage de service permet de plus de réaliser de la surveillance réseau en fournissant des statistiques sur les performances des communications entre les services. Ces performances permettent ainsi de mettre en œuvre des fonctionnalités d’équilibrage de charge, de modification de route (exemple : la réponse d’une instance à un service met trop de temps par rapport à une autre instance pour le même service, le proxy va donc choisir cette dernière instance).

La solution de maillage de service OpenSource ISTIO [3,4] permet ainsi :

  • La gestion de trafic par une configuration des règles de services entre les micro-services
  • La sécurité en introduisant des fonctions d’authentification, d’autorisation (OAuth2) et de chiffrement des communications
  • Observabilité

Figure 4 : La journalisation des messages

3. SCP : Service Communication Proxy

Le service side-car ne fait pas nécessairement partie de l’application, mais il est connecté à celle-ci. Il est présent partout où l’application parente est présente.

Figure 5 : Le principe du maillage de service [5]

Le service n’a pas connaissance du réseau, mais ne connait que le proxy sur lequel il est connecté.

Le proxy réalisant les fonctions suivantes :

  • La découverte de services
  • Le routage
  • L’équilibrage de charges
  • L’authentification et l’autorisation
  • L’observabilité (statistique, log, traces)
  • Le bon fonctionnement (et éventuellement le transfert via une réponse 3XX ou une erreur de service 5XX)

Le standard 3GPP a introduit le proxy SCP dans la R16 [6]. De ce fait, l’architecture SBA n’a pas besoin du proxy SCP dans son principe de fonctionnement. Mais dans le cas de fonction NF multi-distribués, le SCP va résoudre les problématiques de trafic de signalisation en fournissant un point d’entrée unique pour un groupe de fonctions réseau (qui sont enregistrées dans la fonction NRF). Cela permet au SCP de devenir le point de découverte délégué dans un centre de données, déchargeant le NRF des nombreux maillages de services distribués. Les règles de routage du SCP peuvent s’appuyer sur une ressource, un numéro de téléphone ou un identifiant IMSI. Dans le monde des Télécom, par comparaison (et abus de langage), le SCP joue un rôle similaire au proxy et routeur DIAMETER. Il s’agit d’une simple comparaison, le SCP permet l’échange de signalisation dans le réseau d’un opérateur, les agents DIAMETER DRA permettaient de mettre en relation tous les HSS/MME inter-opérateurs (et auparavant, le routage de la signalisation était géré par le réseau SS7 et les points sémaphores STP).

Figure 6 : SS7 -> DIAMETER -> HTTP2 – SCP

Le SCP est un sidecar centralisé, il a pour rôle de gérer la communication de services à services s’il est impliqué. En ce sens le SCP est attaché à chaque NF. Le rôle du SCP inclut l’interfonctionnement entre NF, la segmentation des services, le contrôle d’accès centré sur les services et l’équilibrage de charge. Le SCP apporte donc une abstraction réseau ce qui permet aux développeurs d’applications d’être indépendants de l’infrastructure.

Le SCP n’est pas une fonction réseau, il n’expose pas de service contrairement aux NF. Deux fonctions NF peuvent s’échanger des services directement ou indirectement en passant par le proxy SCP.

Figure 7 : Communication directe/indirecte de deux NF [6 – Fig 7.1.1.1]

Les rôles du SCP sont :

  • D’apporter une fiabilité des services NF.

[6] 5.21.3.4 Reliability of NF Services Si une défaillance de l’instance de service NF est détectée ou notifiée par la NRF (exemple plus disponible), le consommateur de service NF ou SCP sélectionne un autre NF Service Instance de service du même ensemble de services NF dans l’instance NF.

  • De sélectionner la fonction NF adéquate : une fonction NF (consommateur de service) interroge le SCP en transmettant les attributs souhaités de la fonction NF (producteur de service). A partir de ces informations suivantes permettent au SCP de trouver la fonction SMF (DNN, capacité UE, localisation)
  • Le transfert et le routage de message de signalisation
  • Les services de sécurités (ex : autorisation qu’un consommateur de service puisse accéder à l’API d’un producteur de service)
  • L’équilibrage de charge et contrôle de surcharge de trafic
  • Surveillance du réseau
  • Optionnellement interagit avec la base de donnée unifiée UDR pour la résolution de nom (IMSI, IMPI/IMPU, Identité UDM/HSS

 

Figure 8 : Implémentation du maillage de service via le SCP

Le maillage de service et le proxy SCP ajoute de la latence. Dans le cas du service MESH, au moins deux sauts de réseau supplémentaires sont ajoutés lorsqu’un service communique avec un autre service (le premier provient du proxy qui gère la connexion sortante de la source et le second provient du proxy qui gère la connexion entrante de la destination).

Pour l’architecture SBA, la communication entre service peut être directe ou indirecte, c’est-à-dire en passant par le SCP. Quoiqu’il en soit, la latence est sur le plan de contrôle et non le plan de transport.

 

Pour en savoir plus :

  • Linkerd, Istio, Consul, Kuma et Maesh.
  • https://www.infoq.com/fr/articles/service-mesh-ultimate-guide/
  • https://carrier.huawei.com/~/media/cnbgv2/download/products/core/strategy-analytics-5g-signaling-en.pdf

Références :

[1] https://docs.microsoft.com/fr-FR/azure/architecture/patterns/sidecarTS23.501 – System architecture

[2] https://jimmysong.io/en/blog/service-mesh-the-microservices-in-post-kubernetes-era/

[3] https://istio.io/

[4]  https://www.redhat.com/fr/topics/microservices/what-is-istio

[5] https://blog.envoyproxy.io/service-mesh-data-plane-vs-control-plane-2774e720f7fc

[6]  TS 23.501(3GPP  version 16.6.0)  System Architecture for the 5G System.

[7] https://www.metaswitch.com/blog/the-service-communication-proxy-5g-caught-up-in-a-service-mesh

 

 

 

Déploiement 5G-NSA : A quel moment le logo 5G apparait sur mon téléphone

  1. Introduction et problématique

Le déploiement de la 5G-NSA option 3X sur la bande 3,5 GHz consiste à mettre en œuvre une double connectivité (DC – Dual Connectivity) entre la station de base 4G (eNB), appelée station de base maîtresse MNB, et la station de base 5G (en-gNb) appelée station de base secondaire SNB.

Un téléphone UE, compatible 5G, en mode de veille, s’accroche sur une cellule 4G. Pour passer en mode connecté, le mobile fait une demande d’accès aléatoire avec la station de base eNB (cf. méhode d’accès aléatoire).

Dans cet article, nous supposons que la station de base 4G dispose des capacités à mettre en œuvre la double connectivité EN-DC pour une session DATA IP (hors appel VoIP).

Lorsque le mobile fait une requête de service (message NAS Service Request), la station de base 4G transfère la requête de service du mobile à l’entité MME en vue du ré-établissement d’un bearer IP. Ensuite (cf. Double Connectivité), la station de base 4G déclenche la double connectivité entre la station de base 5G et le mobile. A partir de ce moment, le mobile fait une demande d’accès aléatoire avec la station de base 5G (en-gNB) afin de pouvoir échanger des données sur la cellule 5G (cf. Acces aléatoire)

La question est donc de savoir à quel moment le logo 5G s’affiche sur mon téléphone, et est-il possible d’avoir le logo 5G sans pour autant recevoir la 5G ?

  1. Le logo 5G

II-1) Comment le mobile sait que la station de base 4G peut mettre en œuvre la Double Connectivité ?

L’échange de données 5G s’établit à partir du moment où la double connexion est mise en œuvre, donc lorsque le mobile est en mode connecté.

Toutefois, on peut observer le logo 5G sur son téléphone lorsque celui-ci est en mode de veille (aucune session IP). Par conséquent, le mobile est accroché à une station de base 4G maîtresse sur laquelle la double connectivité EN-DC peut être mise en œuvre. La station de base 4G transmet cette information par un message RRC à travers le système d’information SIB2 et plus particulièrement par le paramètre ULI – Upper Layer Indication positionné à la valeur vrai ‘true’.

Figure 1 : Information ULI portée par le SIB2 [1]

II-2) Est-il possible d’avoir le logo 5G sans pouvoir recevoir la 5G

Initialement, la bande de fréquence d’ancrage de la station de base maîtresse eNB pour la 5G-NSA était la fréquence de 700 MHz. Actuellement les autres bandes 4G (800 MHz, 1800 MHz, 2100 MHz ou 2600 MHz) peuvent également être des bandes d’ancrages pour le déclenchement de la double connectivité EN-DC. Quelle que soit la fréquence de la bande d’ancrage, on constate que la fréquence 4G est toujours plus basse que la fréquence 5G, laquelle est située à 3,5 GHz. L’atténuation de l’onde étant fonction de la fréquence, la couverture 5G est plus faible que la couverture 4G dans les mêmes conditions radio.

Figure 2 : Couverture 4G et 5G dans les mêmes conditions radios

Un mobile hors bande 5G reçoit toujours les informations diffusées par la station de base 4G et par conséquent peut afficher le logo 5G sans être sous la couverture de la station de base en-gNB. On parle de configuration D du mobile, lorsque le mobile affiche le logo 5G sous la couverture de la station de base maitresse 4G sans détecter le bloc de signal SSB (synchronisation/diffusion) de la station de base 5G.

Dans les fait, pour des sites co-localisés, la couverture 5G est identique à la couverture 4G : les ingénieurs radio des opérateurs mobiles tiltent les antennes 4G de manière à avoir la même couverture. Dans ce cas, nous ne sommes plus dans les mêmes conditions radio.

Par conséquent, le mobile peut donc afficher le logo 5G même s’il est en veille sur la cellule 4G. Evidemment, un terminal mobile non compatible 5G n’affichera pas le logo 5G puisqu’il ignore l’information ULI porté par le SIB2.

Dans le cadre classique d’attachement, voici le call flow correspondant pour un abonné qui a souscrit à l’offre 5G :

Figure 3 : Procédure d’attachement 5G-NSA Call flow avec un abonnement 5G [3]

  1. Le terminal fait une demande d’attachement (ou de mise à jour de sa localisation) avec le bit DCNR à 1 indiquant au cœur de réseau qu’il est compatible 5G-NSA
  2. L’entité MME met en œuvre :
    1. La procédure d’authentification du mobile avec le serveur HSS
    2. La mise en sécurité de l’interface NAS
    3. La mise en sécurité de l’interface AS
  3. L’entité MME informe le serveur HSS qu’il est le serveur d’enregistrement de l’abonné.
  4. Le serveur HSS met à jour sa table de correspondance IMSI/MME et transmet au MME le type d’abonnement de l’abonné avec des valeurs AMBR maximales pour la 5G via l’AVP extended (AVPs « Extended-Max-Requested-BW-UL » and « Extended-Max-Requested-BW-DL »: 4 294 967 295 bps)
  5. L’entité MME procède à l’établissement des bearers par défaut
  6. L’entité PGW reçoit une demande d’établissement de tunnel avec une demande de débit AMBR élevé. Le PGW interroge l’entité PCRF (message DIAMETER Credit Control CCR-I) avec les valeurs AMBR reçues par le MME.
  7. L’entité PCRF transmet au PGW les caractéristiques de QoS du bearer afin d’établir que l’entité PGW puisse établir sa table d’acheminement.
  8. Le PGW transmet les caractéristiques du bearer et l’@IP du mobile au SGW lequel transfère l’information au MME (Le document [3], le SGW et le PGW sont sur la même entité S/PGW et le SGW n’apparait pas. De plus, la flèche est dans le moment sens sur ce document).
  9. L’entité MME transmet la valeur maximale autorisée UE-AMBR au mobile (10 Gbps) si l’abonne à les droits d’accès 5G. Dans le cas contraire, l’entité MME informe la station de base de la restriction d’accès NR (« RestrictDCNR » bit to « Use of dual connectivity with NR is restricted »)
  10. La station de base eNB transmet la réponse Initial Context Setup à destination du MME permettant de définir les caractéristiques du bearer radio RAB.
  11. La station de base eNB transmet au MME la réponse de l’UE validant l’attachement et l’établissement du bearer par défaut.

Lors de la procédure d’attachement (figure 3), l’entité MME supporte les fonctionnalités suivantes pour la 5G-NSA :

  • Procédure de modification E-RAB

Dans le cas de la 5G-NSA option 3X, l’option SCG (Secondary Cell Group) est activée pour supporter la double connectivité DCNR sur la gNB. La procédure de modification E-RAB permt à l’eNB peut commuter le bearer radio vers la station de base 5G sans modification du tunnel de signalisation S1-MME.

  • Sélection du SGW/PGW

Lorsque le serveur HSS accepte l’option 5G-NSA, le serveur DNS fourni au MME les informations de sélection des entités SGW/PGW pour la mise en œuvre de la double connectivité :

  1. x-3gpp-sgw:x-s5-gtp+nc-nr
  2. x-3gpp-pgw:x-s5-gtp+nc-nr

Mais qu’en est-il si le terminal est compatible 5G, alors que le client n’a pas souscrit à l’offre 5G ?

II-3) Le client n’a pas souscrit à l’offre 5G

Lorsque le mobile s’attache, il émet la requête NAS ATTACH REQUEST à la station de base 4G eNB. Cette requête est relayée par l’eNB vers le MME. Au cours de cette demande d’attachement, le terminal informe le MME qu’il est compatible 5G-NSA à travers le bit d’information nommé DCNR (dual connectivity with NR supported). Le MME interroge le serveur HSS pour l’authentification de l’abonné (cf Attachement et sécurité ).

Une fois l’abonné authentifié, le HSS conserve l’identité du MME sur lequel le mobile est attaché. L’entité MME envoie la requête DIAMETER ULA Update Location Answer en indiquant que le mobile est compatible 5G-NSA et le HSS répond au MME par la requête Update Location Request ULR que la 5G-NSA ne fait pas partie du forfait de l’utilisateur (« Access-Restriction » avec comme précision « NR as Secondary RAT Not Allowed »). Ainsi, le MME va informer la station de base de la restriction de la double connectivité par le message RestrictDCNR=1 (Use of dual connectivity with NR is restricted » in the EPS network feature support IE), ce qui va de plus interdire le mobile de faire des mesures 5G (évènements B1 et B2).

Lorsque le mobile fait un changement de MME (par la requête TAU – Tracking Area Update par exemple), les messages ULR/ULA seront échangés entre le serveur HSS et la nouvelle entité MME. Si le client change de forfait et que le mobile est attaché, alors le serveur HSS met à jour les informations auprès du MME par le message DIAMETER IDR/IDA (Insert-Subscription-Data-Request/Answer).

Pour plus de détail, reprenons la spécification 3GPP:

« If the RestrictDCNR bit is set to “Use of dual connectivity with NR is restricted” in the EPS network feature support IE of the Attach Accept/Tracking Area Update Accept message, the UE provides the indication that dual connectivity with NR is restricted to the upper layers.”

Figure 4 : Procédure d’attachement 5G-NSA Call flow sans abonnement 5G[4]

Si le terminal est compatible 5G mais l’abonne n’a pas souscrit à l’offre 5G alors le terminal n’est pas supposé fonctionner en 5G. Toutefois, je n’ai pas personnellement fait le test, on peut lire dans des forums une procédure pour contourner l’attachement en forçant dans un premier temps l’attachement sur le réseau 3G et ainsi ne pas transmettre la restriction DC puis de lever ce forçage pour que le mobile sélectionne une station de base 5G.

  1. 4G attach in any MME
  2. put the phone in 3G: Preferred Network Type : Prefer 3G
  3. change Preferred Network Type : Prefer 5G. (Most likely the MME takes the profile from 3G SGSN and it doesn’t get any 5G restriction from there since the SGSN doesn’t know what 5G is. The 5G restriction is set in HSS.)
  4. Enjoy 5G.

Cette procédure semble fonctionner sur un cœur de réseau Huawei (l’auteur du blog étant situé en roumanie : https://volteromania.blogspot.com/p/5gproblem.html)

III) Conclusion

Pour pouvoir afficher le logo 5G, il est déjà nécessaire d’avoir un smartphone compatible 5G et un abonnement 5G.

L’alliance GSMA proposé 4 configurations :

  • Configuration D : le mobile est en mode de veille sous la couverture d’une station de base 4G eNB qui diffuse l’information UpperLayerIndication=true dans le SIB2.
  • Configuration C : Le mobile est en mode connecté avec une station de base 4G et la station de base 4G configure l’interface radio du mobile pour faire des mesures 5G (SS-RSRP).
  • Configuration B : Le mobile est attaché sur une station de base 4G qui diffuse l’information UpperLayerIndication=true dans le SIB2 et le mobile mesure en plus la présence d’une station de base 5G (SS-RSRP)
  • Configuration A : Le mobile est connecté en double connectivité sur la station de base 4G et 5G.

 

Biblio

[1] TS 36.311 Radio Resource Control (RRC); Protocol specification (3GPP TS 36.331 version 15.3.0 Release 15) – ASN1 SystemInformationBlockType2 information element

[2] TS 29.272 V15.5.0 (2018-09) – Evolved Packet System (EPS); Mobility Management Entity (MME) and Serving GPRS Support Node (SGSN) related interfaces based on Diameter protocol

[3] https://www.cisco.com/c/en/us/td/docs/wireless/asr_5000/21-16_6-10/5G-NSA/21-16-5G-NSA-Solution-Guide/21-16-5G-NSA-Solution-Guide_chapter_010.html

[4] https://www.telecomhall.net/t/ue-restrictdcnr-use-of-dual-connectivity-with-nr-is-restricted/10352/20

Les informations UCI portées par le canal PUCCH

Canal PUCCH et les données UCI

Le mobile UE (User Equipment) émet vers la station de base des informations de contrôle (du lien montant) UCI (Uplink Control Information) parmi la liste suivante :

  • ACK/NAK confirmant ou non la bonne réception du message descendant précédent
  • Le rapport de mesure CSI (Channel State Information) permettant à la station de base d’adapter le mode de transmission et le schéma de modulation et de codage MCS (Modulation Coding Scheme) à partir de l’indicateur CQI (Channel Quality Indicatot), le rang de la matrice de transmission RI (Rank Indicator) et le rang du code pour le précodage PMI (Pre-coding Matrix Indicator) estimé par le mobile.
  • SR (Scheduling Request) pour une demande de transmission de données en UL.

Ces informations de contrôle sont portées en général par le canal physique PUCCH (Physical Uplink Control Channel), mais elles peuvent être transmises par le canal physique PUSCH si celui-ci est présent.

Selon la taille des informations de contrôle UCI à transmettre,le canal PUCCH est défini parmi l’un des 4 différents formats suivant (format de contrôle 0 à 4) :

Figure 1 : Le canal PUCCH et les différents formats

Le format permet de spécifier la taille du message, le codage canal, le type de modulation et le multiplexage avec le signal de référence DMRS si possible : les formats 1 et 4 autorisent le multiplexage de l’UCI avec le signal de référence DMRS dans le PRB afin d’améliorer la démodulation (détection synchrone). Le format 0 ne met pas en œuvre de détection synchrone, car le gain de démodulation n’est pas suffisamment important.

Les formats 0 et 2 sont nommés format courts (SHORT PUCCH) car ils n’occupent qu’un seul ou deux symbole OFDM (soit 12 à 24 éléments de ressources), en général sur le dernier ou les deux derniers symboles d’un slot.

Les formats 1, 3 et 4 sont nommés format long car ils occupent 4 à 14 symboles OFDM. Un format long est utilisé pour des informations de tailles importantes ou par répétition pour améliorer la couverture (exemple format 1).

Figure 2 : La transmission du canal PUCCH court/long sur l’interface NR

Au niveau de l’interface LTE, le canal PUCCH est transmis dans les bandes de fréquences PRB extrêmes permettant une diversité sur les fréquences hautes/basses et une diversité temporelle au niveau des slots.

Au niveau de l’interface NR, le format PUCCH court est transmis sur un ou deux symboles dans un slot et le format PUCCH long sur 4 à 14 symboles du slot (figure 2).

Avant d’être transmis sur le bloc physique de ressource PRB, les informations de contrôles UCI sont modulées par une chaîne de transmission comprenant :

  • un générateur de séquence de longueur 12 basé sur l’algorithme de Zadoff-Chu.
  • une modulation (formats 1,2,3 et 4) ;
  • un code DFT d’embrouillage (formats 2,3,4).

Figure 3 : Chaine de traitement de l’information de contrôle UCI (Source Matlab 1)

Le codage canal est un codage :

  • De répétition si la taille de l’UCI est de 1 bit;
  • Code correcteurs linéaires : code simplexe (taille de 2 bits) ou Reed Muller (Taille de 3 à 11 bits) ;
  • Code polaire (taille > 11 bis).

La chaîne de transmission est codée par :

  • Une séquence de Zadoff Chu (générateur de séquence s) ;
  • Un déphasage cyclique v ;
  • Un code orthogonal OCC (Orthogonal Cover Code) w.

Figure 4 : Illustration de la chaîne de transmission du canal PUCCH

  • PUCCH Format 0

Le PUCCH format 0 est configuré sur 1 ou deux symboles OFDM dans un slot et dans un seul PRB. L’information portée par le format 0 (PF0) est soit un acquittement HARQ-ACK soit un bit SR ou les deux. Ainsi, un ou deux bits d’informations sont à transmettre ce qui définit une variable mcs qui vaut, selon le codage de gray :

  • mcs =0 pour le bit 0 ou mcs =6 pour le bit 1
  • mcs =0 pour les bits (00), mcs =3 pour les bits (01), mcs =6 pour les bits (11) et mcs =9 pour les bits (10)

Le générateur de séquence émet une séquence de Zadoff-Chu de longueur 12, initialisée par la valeur NID de la cellule.

Afin de permettre un multiplexage entre plusieurs terminaux, la séquence de zadoff-chu est affectée d’un décalage cyclique m0 dont la valeur est configurée entre 0 et 11. Cette séquence est nommée low PAPR et le décalage cyclique m0 est défini par un message de configuration dédié RRC via le paramètre InitialCyclicShift dans la configuration PUCCH-Config IE> PUCCH-Resource > PUCCH-Format 0 (TS 38.311) par BWP :

Ainsi, la séquence émise est un décalage en fréquence de valeur (m0 + mcs).

L’information UCI pour les transmissions URLLC utilisent de préférence le PF0 (PUCCH Format 0).

  • Le canal PUCCH Format 1

Le canal PUCCH de format 1 transporte 1 à 2 bits UCI (HARQ-ACK et/ou SR) et est étalé sur 4 à 14 symboles permettant le multiplexage par code pour transmettre plusieurs acquittements de mobiles différents. Le signal UCI est codé par un code orthogonal OCC (Orthogonal Cover Code).

La modulation utilisée est soit la modulation BPSK (1 bit) ou QPSK (2 bits) et est multipliée par la même séquence de Zadoff-Chu de longueur 12. Un décalage cyclique m0 dont la valeur est configurée entre 0 et 11 est utilisé en plus du codage OCC (de longueur 2 ou 4) afin d’augmenter le nombre de terminaux qui émettent simultanément leur acquittement.

La détection cohérente apporte un gain au niveau de la réception du format long. La séquence DMRS est générée pour avoir un faible PAPR et un décalage en fréquence est appliqué.

Deux motifs de transmissions sont supportés :

  • Motif d’extension ou le signal de référence DMRS et l’information UCI sont entrelacés ;
  • Méthode de perforation (puncturing) ou le signal de référence DMRS est au milieu du slot.

Figure 6 : Les motifs pour le canal PUCCH format 1

  • Le canal PUCCH Format 2

Le canal PUCCH de format 2 est un format court qui est utilisé pour transporter une quantité d’informations plus importantes que le PUCCH de format 0 ou 1 (CSI, ou plus que deux acquittement HARQ-ACK, par exemple dans le cas d’agrégation de porteuses). Plusieurs blocs de ressources PRB peuvent être utilisés pour des charges de données importantes, toutefois si le mobile doit acquitter plusieurs HARQ et qu’il n’est pas possible d’allouer assez de ressource radioélectrique, alors la priorité est donnée pour l’acquittement au dépend du rapport CSI.

Le codage utilisé est le code linéaire Reed-Muller pour une charge utile de 11 bits ou le code polaire au-delà avec l’ajout d’une entête CRC. Le signal est ensuite embrouillé par l’identité du terminal C-RNTI puis modulé en QPSK.

Plusieurs motifs de multiplexages en forme de peigne du signal DMRS et UCI sont proposées avec un rendement de ½, 1/3 ou ¼ comme le montre la figure 7 (sur le dernier symbole comme c’est le cas pour les formats PUCCH court).

Figure 7 : Les motifs pour le canal PUCCH format 2

  • Le canal PUCCH Format 3

Le PUCCH format 3 est au PUCCH format 2 ce que le PUCCH format 1 est au PUCCH format 0. On a ainsi les mêmes caractéristiques que le PUCCH format 2 en transmettant sur 4 à 14 symboles (PUCCH format long).

La position du signal de référence peut exploiter le saut de fréquence (frequency hopping).

  • Le canal PUCCH Format 4

Le PUCCH de format 4 est similaire au PUCCH de format 3 en ajoutant les codes OCC pour augmenter le nombre de transmission simultanées.

 

 

[1] Source Matlab : https://www.youtube.com/watch?v=Tc_ECMWSH30

[2] https://rfmw.em.keysight.com/wireless/helpfiles/89600B/WebHelp/Subsystems/newradio/content/newradio_dlg_config_pucch.htm

[3] https://www.etsi.org/deliver/etsi_ts/138200_138299/138213/15.06.00_60/ts_138213v150600p.pdf

[4] https://www.etsi.org/deliver/etsi_ts/138300_138399/138331/15.03.00_60/ts_138331v150300p.pdf