Part 1 : Interface Radioélectrique 5G – Trames, numérologies et allocation de ressources

Extrait du livre : NG-RAN et 5G-NR : L’accès radio 5G et l’interface radioélectrique – sortie prévue juillet 2021

A l’instar de la 4G, l’interface radioélectrique 5G-NR utilise la modulation OFDM puisque celle-ci se révèle être la plus efficace dans le cas des transmissions multi-trajets (propagation en champs libre).

La modulation OFDM est une modulation multi-porteuses orthogonales, elle transmet un bloc de données binaires sur un grand nombre de porteuses en même temps. On définit ainsi le domaine fréquentiel de la transmission 5G par la largeur de sa bande de fréquence, c’est-à-dire par le nombre de sous-porteuses utilisées multiplié par l’espacement entre sous-porteuses.

L’orthogonalité se traduit par la durée de la transmission d’un symbole qui est inversement proportionnelle à l’espacement entre sous-porteuses. Ainsi, si les sous-porteuses sont espacées de 15 kHz, la durée de la transmission d’un symbole est de 66,67 µs (1/15 kHz).

Figure 1 : La transmission OFDM

Le bloc de données à transmettre est une suite binaire. La modulation OFDM permet de faire une modulation M-QAM sur chacune des porteuses.

A titre d’exemple, pour une modulation 64-QAM, 6 bits sont modulés par sous-porteuse. Les 6 bits forment un symbole.

Une station de base 5G peut moduler au plus 3300 sous-porteuses. Si les sous-porteuses sont espacées de 30 kHz alors la largeur de bande 5G est de 99 MHz et la durée d’un symbole est de 33,33 µs.

Ainsi, si la station de base transmet le bloc de données sur 3300 sous-porteuses simultanément, alors dans le cas d’une modulation 64-QAM, la station de base gNB pourrait potentiellement transmettre 3300*6 = 19 800 bits pendant la durée d’un symbole de 33,33 µs.

Si le bloc de données à transmettre est supérieur à 19 800 bits, alors la station de base va émettre les bits restants sur le(s) symbole(s) suivant(s) (33,33 µs suivante).

La modulation OFDM est donc une modulation qui exploite le domaine fréquentiel (nombre de sous-porteuses) et le domaine temporelle (durée d’un symbole).

Pour la 5G, on définit :

  • dans le domaine fréquentiel, un bloc de ressource RB (Resource Bloc) qui correspond à 12 sous-porteuses contiguës ;
  • dans le domaine temporel, un slot correspond à 14 symboles consécutifs.

Afin d’organiser la transmission de données, et synchroniser les récepteurs, les transmissions en liaison descendante et montante sont organisées en trames d’une durée de 10 ms, chacune est découpée en dix sous-trames de 1 ms. Chaque trame est divisée en deux demi-trames de taille égale à cinq sous-trames :

  • la demi-trame 0 est composée des sous-trames 0 à 4 ;
  • la demi-trame 1 est composée des sous-trames 5 à 9.

Pour l’interface LTE, la sous-trame est composée de deux intervalles de temps (slot). Attention, la notion de slot en 4G est différente de la notion de slot en 5G : un slot LTE correspond à 7 symboles OFDM consécutifs (trame normale) de durée 0,5 ms. La valeur de l’intervalle de temps de transmission 4G-TTI (Transmission Time Interval) correspond à la durée de la sous-trame et a une valeur fixe égale à 1 ms car l’espacement entre sous-porteuse est de 15 kHz.

Pour l’interface NR, le slot est composé de 14 symboles OFDM consécutifs (trame normale).  La valeur de l’intervalle de temps de transmission 5G-TTI correspond à la durée d’un slot. La valeur 5G-TTI dépend de l’espacement entre les sous-porteuses (tableau 1).

Tableau 1 : La structure de la trame temporelle

L’espacement entre sous-porteuses SCS (SubCarrier Spacing) est défini par la formulation suivante :

SCS=2µ*15 kHz, avec µ la numérologie.

Si µ=0, l’espacement est de 15 kHz, si µ=1 l’espacement est de 30 kHz, … Dans la suite, on parlera de numérologie.

1) La grille de ressources

 

Figure 2 : La grille de ressources

Un élément de ressource RE (Resource Element) constitue la plus petite unité pouvant être attribuée à un signal de référence (figure 1). L’élément de ressource RE correspond à un symbole OFDM dans le domaine temporel, et à une sous-porteuse dans le domaine fréquentiel. Il est ainsi repéré par la paire (k,l), k représentant l’indice de la sous-porteuse et l, l’indice du symbole OFDM dans le domaine temporel par rapport à un point de référence relatif.

Le bloc de ressource RB (Resource Block) correspond à une allocation de N=12 sous-porteuses contiguës (figure 1). A la différence de la 4G, le bloc de ressource RB 5G correspond à une allocation fréquentielle.

La grille de ressources est une allocation de ressources tempo-fréquentielles correspondant aux ressources d’un port d’antenne. Elle est constituée d’un ensemble de symboles par sous-trame (cf. tableau 2) dans l’espace temporel et d’un ensemble de sous-porteuses contiguës dans le domaine fréquentiel. La grille de ressources est composée d’au plus 3300 sous-porteuses et elle est transmise sur chaque sens de transmission et sur chaque port d’antenne.

Table 2 : Numérologie et nombre de symboles par sous-trame

Pour mieux comprendre la table 2, nous allons présenter la numérologie dans le domaine temporel sur la figure 3.

Figure 3 : La trame temporelle 5G-NR

Une trame 5G est définie par une durée de 10 ms. La trame 5G est découpée en 10 sous-trames d’une ms. Chaque sous-trame est composé de slots. Le nombre de slot par sous-trame dépend de l’espacement entre sous-porteuses (table 2 : numérologie).

 

[0] Extrait du livre : NG-RAN et 5G-NR : L’accès radio 5G et l’interface radioélectrique

Extrait du module de Formation LTE 4G – part 2

cet article est la suite d’un premier descriptif issu d’un module de formation sur la 4G. Pour accéder au premier article, cliquez ici.

Dans cet article, nous allons nous intéresser au préfixe cyclique.

CP : Cyclic Prefix 

Comme indiqué précédemment, le découpage en sous bande simplifie l’égalisation du signal reçu, un autre point plus délicat à comprendre est l’utilisation de la redondance cyclique à l’émission pour réduire la complexité  des terminaux grâce à l’utilisation d’algorithmes à base de FFT. Une FFT est une transformée de Fourier rapide (Fast Fourier Transform) et qui nécessite d’avoir un nombre d’échantillon égale à une puissance de 2 (2, 4, 8, 16, 32, 64, 128, 256, …). Nous retrouverons cette notion sur la couche physique du LTE, retenez ce point.

Le Prefixe Cyclique (CP) est une technique qui consiste à insérer une copie d’un bloc d’information à transmettre en amont de la trame. Plus clairement, il s’agit de récupérer une partie des informations à transmettre et d’insérer ces informations en début de trame.

En règle générale, il est nécessaire d’avoir une longueur du préfixe supérieur à la longueur du canal. Pour simplifier, prenez le phénomène d’écho, supposons l’écho vous revient au bout d’1 seconde, dans ce cas, il faudrait une longueur supérieure à 1 s afin de garantir qu’entre le 1er mot transmis et le deuxième, le premier mot avec écho soit arrivé au destinataire avant le 2ème mot.

Le CP joue le rôle de Buffer dans le cas d’une transmission dite à  multi-trajets (plusieurs échos), comme représenté sur la figure ci-dessous, afin d’éliminer l’interférence entre symboles (ISI)

Reprenons l’exemple avec 3 échos et avec rajout d’un préfixe. Le signal reçu est tronqué afin de supprimer les préfixes. L’écho apporte un retard entre le premier signal reçu et le 3ème. Je vais donc entendre 3 fois le mot échos avec des retards entre le premier, le deuxième et le 3ème écho.

Supposons que je souhaite transmettre les deux mots 1234567 puis 891234, je transmets d’abord 1234567 sans CP

Je transmets donc

1234567891

123456789

12345678

Je tronque [ ], je reçois donc un mélange des deux mots

xx [             ]

12[3456789]

  1[2345678]

xx [1234567]

Supposons que je souhaite transmettre les deux mots 1234567 puis 891234, je transmets d’abord 1234567 avec  CP 567

Je transmets donc

5671234567891

5671234567891

5671234567567891

Je tronque, je reçois donc un mélange des deux mots

567[1234567]891

   5[6712345]7891

     [5671234]67891

Je reçois maintenant 3 fois la même séquence, qui est le mot d’origine non pollué (interféré) avec le deuxième mot à transmettre. Comme de plus, chaque chiffre est transmis sur des porteuses multiples les unes des autres, je reçois trois fois la même séquence à une modulation fréquentielle près. Évidemment, l’inconvénient est l’émission d’une séquence redondante (plus de puissance à transmettre), et il faut respecter à ce que la longueur du CP soit plus importante que les multi-trajets

La chaîne complète est donc la suivante

Extrait du module de Formation LTE 4G

Bonjour

dans mes modules de formation 4G, je détaille la couche physique et je développe une formule permettant de calculer la capacité théorique du canal en appliquant la formule de Shannon, et appliqué à la 4G.

Je vous propose de vous livrer un chapitre de mon cours, à travers 3 articles pour aboutir à la formulation de la capacité du canal en 4G.

Cet article étant le premier, je vais revenir sur l’OFDM, principe déjà traité dans ce blog.

Principe de l’OFDM

Deux points critiques (parmi tant d’autres) pour les télécommunications sont la synchronisation et l’adaptation au canal de propagation. Dans le cadre d’une transmission mobile, le canal de propagation varie fortement (cf. canaux sélectifs en fréquence et en temps, article Pourquoi-la-4g-utilise-lofdma)

Lorsqu’un canal est sélectif en fréquence, l’atténuation varie d’une bande de fréquence à une autre. Imaginer un égaliseur audio (cf. audacity ou equalify) qui modifie les sons dans les aigus et les graves, il en est de même pour le signal reçu au niveau de l’équipement radio. Pour illustrer cela sur un extrait audio, je vous propose de modifier des séquences audios via Audacity.

Parmi les techniques de compensation (on parle plutôt d’égalisation), l’utilisation de modulations multi-porteuses sont plus simple à mettre en place car, comme dans le cas des égaliseurs audios, l’équipement ne modifie (amplifie) qu’une bande faible de signal. Le signal OFDM (imaginé en 1960) consiste à transmettre une information binaire (une suite de bits, c’est-à-dire des symboles) sur des porteuses différentes, autrement sur des fréquences différentes (la aussi, on peut imaginer le concept avec la radio FM, imaginez qu’une radio diffuse non plus sur une seule fréquence, mais sur plusieurs fréquences).

Le spectre ainsi obtenu est un ensemble de modulation sur des porteuses équi-réparties. Le spectre est représenté sur la figure ci-dessous.

C’est avec l’avènement et la maitrise des composants programmable que l’OFDM a connu un véritable essor. En effet, cette modulation est maitrisée et rapidement réalisée via un composant électronique dédié, nommé DSP. La technique utilisée est la fameuse transformée de Fourier. Nous représentons le synoptique de la chaîne OFDM et l’outil mathématique en jaune permettant de réaliser cette fonction OFDM.

Cette méthode (OFDM et réalisation pratique) est déjà utilisée dans différents standards sans fils (IEEE802.11a, WiMAX, LTE, DVB).

Comme on peut le constater sur les figures précédentes, le principe consiste à sérialiser les informations à transmettre sur N sous porteuses.

Imaginons devoir transmettre une information dont le débit est de 1024000 symboles par secondes. Le spectre du signal est donc étendu sur une bande de 2*1024000 Hz (sans filtrage).

Si l’on sérialise sur 1024 porteuses, nous allons transmettre 1000 symboles par seconde par porteuses, le spectre par porteuse est donc de 2*1000 Hz (sans filtrage). Il suffit donc de transmettre chacune des porteuses avec un écart de 1000 Hz pour avoir une transmission OFDM.

Nous traiterons dans le prochain article du préfixe cyclique.