Vote rural, vote urbain : une distinction peu opérante

Je reviens à la charge sur l’analyse des votes, suite à un message reçu sur Linkedin, qui renvoyait sur le post ci-dessous, représentatif de tout un ensemble d’interprétations du vote du premier tour (il ne s’agit donc pas de dénoncer les propos de l’auteur du post, mais de les déconstruire) :

La personne qui m’a écrit me demandait ce que je pensais de ce post, compte-tenu de ma tendance à critiquer les discours opposants métropoles, villes moyennes et monde rural. Or, le post semble interpréter les résultats à l’aune d’une fracture territoriale, qui opposerait monde urbain et monde rural (ou Métropoles et France périphérique pour reprendre le vocabulaire le plus usuel), et qui semble bien réelle. Voici des éléments d’analyse.

Le premier problème avec cette carte, c’est qu’elle donne à voir, pour chaque commune, le candidat arrivé en tête, si bien qu’on a l’impression, quand une commune est en bleue, que tous les habitants de ladite commune ont voté le Pen, et quand elle est en beige, que tous ont voté Macron, ce qui n’est pas le cas. Mieux vaut s’en remettre aux pourcentages obtenus par les candidats. En l’occurrence, je vous propose de me concentrer sur Macron et le Pen, et d’analyser les scores sur la base de la grille communale de densité, qui permet de distinguer le monde urbain (communes très denses et de densité intermédiaire) et le monde rural (communes peu denses et très peu denses).

votes obtenus par les deux premiers candidats au premier tour de la présidentielle de 2022 (%)

Les votes en France métropolitaine varient selon le degré de densité, un peu pour Macron, plus fortement pour le Pen, avec environ dix points d’écarts entre les communes très denses et les autres. Les résultats pour la Moselle sont peu différents, si ce n’est que le vote Macron y est un peu plus faible et que le vote le Pen y est plus nettement plus fort.

Le problème est que ces différences sont liées en partie aux différences de composition sociale des territoires : supposons que les ouvriers votent plus souvent le Pen que les autres catégories sociales, et qu’ils soient plus présents dans les communes peu denses et très peu denses, on s’attend à ce que le vote le Pen soit plus fort dans ces communes, non pas parce qu’elles sont « rurales », mais parce que la composition des personnes qui y vivent est différente.

Distinguer entre ces effets de composition et les effets de densité est essentiel, pour ne pas mésinterpréter les votes. Si on ne le fait pas, on s’expose à des interprétations du type : les personnes qui vivent dans le rural votent plus souvent pour le Pen, car ils sont moins tolérants, ils ne sont pas ouverts aux autres, moins ouverts à la diversité à laquelle ils ne sont pas confrontés au quotidien, ils pâtissent d’un faible degré d’urbanité, etc.

J’ai procédé ailleurs à une analyse qui permet de distinguer effets de composition et effets de densité. Méthodologiquement, il s’agit « d’expliquer » les votes en ne retenant que la densité comme variable (on obtient alors des effets bruts), puis en retenant d’autres variables à côté de la densité, pour obtenir des effets nets. Plus précisément, j’ai retenu dans mon analyse la part des personnes diplômées du supérieur, le taux de chômage, la part des plus de 65 ans, la part des 15-29 ans et la part des immigrés (j’ai également intégré une indicatrice régionale pour la France métropolitaine).

effets bruts et effets nets de la densité sur les scores des deux premiers candidats au premier tour de l’élection présidentielle de 2022 (%)

La partie haute du tableau reprend les résultats pour l’ensemble de la France métropolitaine, la partie basse pour la Moselle. Je vous explique comment lire le tableau, en prenant l’exemple de sa partie haute , le chiffre de -1,4 de Macron pour les communes de densité intermédiaire : ce qu’il signifie, c’est qu’en moyenne, en France métropolitaine, le score de Macron est inférieur de 1,4 point de pourcentage dans les communes de densité intermédiaire, par rapport à son score dans les communes très denses (qui sont prises comme modalité de référence). Quand on neutralise les effets de composition, on constate que l’effet “densité intermédiaire plutôt que forte densité” passe de -1,4 à +0,1 point de pourcentage.

Que ce soit en France métropolitaine ou dans le département de la Moselle, le résultat principal est que l’effet de la densité sur le vote le Pen est très sensiblement réduit, il passe de plus de 10 points à 1 ou deux points. De plus, en Moselle, les coefficients attachés aux communes de densité intermédiaire, peu denses et très peu denses ne sont pas significativement différents de 0 (pas de différence statistiquement significative au seuil de 1% pour le score de le Pen entre les différents types de communes).

Un autre résultat intéressant pour la Moselle est que l’effet de densité s’inverse pour Macron : il est négatif quand on analyse l’effet brut, il devient positif quand on analyse l’effet net. Ceci signifie qu’à caractéristique identique, en Moselle, les personnes vivant dans les communes moins denses ont plus voté pour Macron que celles vivant dans des communes plus denses. Ce n’est pas le cas ailleurs en France, les effets de densité restent négatifs pour Macron quand la densité diminue.

A caractéristiques identiques, les écarts de vote entre monde rural et monde urbain sont donc limités. Si l’on observe des différences, c’est, pour l’essentiel, parce que les caractéristiques des populations qui y vivent diffèrent. On peut donc en déduire que les interprétations à coup de gradient d’urbanité sont à prendre avec d’infinis précautions, pour dire le moins.

Ceci étant, il reste des effets de densité en France métropolitaine, limités mais significatifs. Comment peut-on l’expliquer ? Première hypothèse : les variables mobilisées ne capturent qu’une partie des différences de composition sociale, si je pouvais les capturer totalement, les effets de densité disparaîtraient.  Deuxième hypothèse, qui a ma préférence : en dehors des effets de composition, il existe des différences significatives entre monde rural et monde urbain, notamment en matière d’accessibilité aux services et aux équipements, qui peuvent conduire à des différences dans les votes.

Ceci me permet d’insister pour finir sur un point important : je dénonce souvent l’opposition entre métropoles, villes moyennes, petites villes et monde rural, mais c’est sur le plan de la capacité à innover ou à créer des emplois. Ceci ne signifie pas qu’il n’existe aucune différence entre ces catégories de territoires : il en existe, notamment sur ce sujet des services à la population. Ce qui me conduit à plaider pour qu’on arrête de croire que l’horizon indépassable de la création de richesse et d’emploi, ce sont les métropoles, d’une part, et qu’on se focalise sur les enjeux d’aménagement et d’équipement des territoires, en se préoccupant de ceux qui pâtissent d’un déficit en la matière, d’autre part.

Suite à des demandes, voici en complément les résultats obtenus pour Jean-Luc Mélenchon :

Géographie du monde d’après : assiste-t-on à un “exode urbain” ?

Difficile de répondre à cette question, car on ne dispose pas de données récentes sur les mobilités résidentielles. Pour contourner le problème, j’ai eu l’idée de travailler sur les inscriptions scolaires dans le premier et dans le second degré, avant la crise sanitaire (entre la rentrée 2016 et la rentrée 2019) et depuis le début de la crise (entre la rentrée 2019 et la rentrée 2020 puis entre la rentrée 2020 et la rentrée 2021).

J’en ai tiré une tribune que le Monde vient de publier. Résultat principal ? Si on ne peut évidemment pas parler d’exode urbain, il se passe quelque chose, malgré tout, notamment pour les inscriptions dans le premier degré (donc plutôt pour des couples jeunes) : alors que la dynamique des inscriptions des 22 métropoles était significativement supérieure à la moyenne avant la crise, elle est devenue significativement inférieure entre la rentrée 2020 et la rentrée 2021. Réciproquement, la dynamique observée dans les communautés de communes, significativement inférieure à la moyenne avant la crise, est maintenant dans la moyenne, et donc plus favorable que celle des métropoles (ceci dans un contexte de baisse globale des inscriptions).

Taux de croissance annuel moyen des inscriptions scolaires dans le premier degré (données Ministère, traitements Région Nouvelle-Aquitaine) – source.

Comme précisé dans la tribune, cette tendance moyenne masque des disparités : parmi les 22 métropoles, 12 connaissent une baisse plus faible que la moyenne et 10 une baisse plus forte, à commencer par Paris, qui est sans trop de surprise la métropole la plus affectée, mais aussi Grenoble, Clermont, Nancy et et Lyon.

En complément, j’ai regardé s’il y avait un lien entre évolution des inscriptions et proximité aux métropoles, la réponse est non, aucun lien statistique significatif, des territoires proches des métropoles et d’autres plus lointain ont des dynamiques plus favorables et d’autres moins favorables. La carte ci-dessous (version dynamique ici) permet de confirmer, vous pouvez y voir les intercommunalités dont les effectifs sont en croissance entre la rentrée 2020 et la rentrée 2021 (elles sont au nombre de 269, sur un total de 1231 intercommunalités).

Intercommunalités dont les effectifs ont augmenté entre la rentrée 2020 et la rentrée 2021 – version dynamique ici

Pour des développements sur ce que l’on a fait, vous pouvez regarder, en plus de la tribune, ce document de travail. Pour information également, je présenterai ces résultats dans le cadre d’un webinaire organisé par l’Observatoire des Impacts Territoriaux de la Crise, qui aura lieu jeudi 13 janvier de 10h30 à 12h30, inscriptions ici.

Des métropoles plus performantes ? Petit bilan du monde d’avant

Je suis régulièrement interrogé sur la dynamique des territoires avant crise et après-crise, la question de la dynamique comparée des métropoles, des villes moyennes et du rural revenant régulièrement sur la table. Dans l’esprit de beaucoup des personnes qui m’interrogent, le monde d’avant était celui du triomphe des métropoles, la question étant de savoir si ce sera toujours le cas dans le monde d’après, ou bien si l’on va assister à la revanche des villes moyennes, ou du rural, etc.

Ce faisant, je commence souvent par rappeler que non, le monde d’avant n’était pas synonyme de triomphe des métropoles, que c’était plus compliqué que cela, et que cela devrait continuer à être plus compliqué que ce que certains voudraient, qu’il convient de rejeter les « modèles à une variable » censés tout expliquer du monde qui nous entoure.

Cela m’a donné envie de rédiger un petit billet, pour faire le point sur la situation relative des métropoles juste avant la crise, pour savoir d’où l’on part, sur la base de l’analyse statistique de quelques indicateurs : 1) le taux de croissance de la population, 2) la composante naturelle du taux de croissance de la population, 3) la composante migratoire du taux de croissance de la population, 4) le taux de croissance de l’emploi, 5) le taux de chômage.

J’ai utilisé à chaque fois les données du recensement, les deux derniers comparables disponibles, à savoir le recensement millésime 2018 et le recensement millésime 2013. Pour rappel, le recensement se fait au 1/5 chaque année, donc le recensement millésime 2013 couvre la période 2011-2015 et le recensement millésime 2018 couvre la période 2016-2020 (le début de l’année à chaque fois). C’est donc la période début 2011- début 2020 qui est couverte par ces données.

Chaque observation correspond à un EPCI (un Etablissement Public de Coopération Intercommunal, soit une intercommunalité en langage courant) : les 22 métropoles, les 14 communautés urbaines, les 221 communautés d’agglomération et les 992 communautés de communes, soit 1249 EPCI France entière (hors Mayotte).L’ensemble de ces données est disponible librement au téléchargement, par exemple sur le site de l’observatoire des territoires, à cette adresse.

Comment analyser la situation des métropoles ? La méthode la plus simple consiste à calculer la moyenne des indicateurs pour l’ensemble des métropoles, à la comparer à la moyenne pour l’ensemble des territoires, puis de conclure. Certes mais danger, comme expliqué à maintes reprises : la moyenne d’une catégorie peut masquer des différences fortes au sein de la catégorie, il convient donc de regarder d’une façon ou d’une autre si ces différences de moyenne ont du sens.

Commençons par calculer les moyennes :

moyenne des indicateurs pour les 22 métropoles et pour l’ensemble des EPCI

Il s’avère qu’en moyenne, les métropoles ont une croissance démographique supérieure, qui s’explique par un solde naturel plus grand, qui fait plus que compenser le solde migratoire inférieur (et même négatif). Le taux de croissance de l’emploi est également supérieur, et le taux de chômage inférieur. Tout les indicateurs semblent au vert pour les métropoles, si ce n’est le solde migratoire (ce qui n’est pas rien, soit dit en passant, les métropoles étant censées tirer leur force de leur plus grande attractivité).

Mais ces différences de moyenne ont-elles du sens ? Pour en juger, étant donné que ce qui nous intéresse, ce sont les 22 métropoles, le plus simple est de regarder les données pour chacune d’entre elles, et de voir comment elles se situent par rapport à ces moyennes. : sur les 22 métropoles, 10 ont un taux de croissance inférieur au taux de croissance moyen, 6 un solde naturel inférieur, 10 un solde migratoire inférieur, 7 un taux de croissance de l’emploi inférieur et 8 un taux de chômage supérieur.

nombre de métropoles dont la situation est moins bonne qu’en moyenne

Il ne s’agit pas d’une ou deux exceptions, mais d’un nombre importants de cas, qui font qu’on ne peut pas dire que les métropoles sont plus “performantes” que les autres territoires sur l’un de ces indicateurs. Tout ce que l’on peut dire, c’est que certaines métropoles sont plus “performantes” que la moyenne et d’autres non (et c’est vrai des autres catégories de territoires).

En complément, on peut regarder, dans l’ensemble des 22 métropoles, combien sont plus “performantes” sur tous les indicateurs : elles sont au nombre de 6, il s’agit de Bordeaux, Lyon, Nantes, Rennes, Orléans, Toulouse. Six autres métropoles ont un seul indicateur inférieur à la moyenne (Aix-Marseille, Clermont, Dijon, Montpellier, Strasbourg et Toulon). Deux métropoles sont moins “performantes” pour deux indicateurs (Brest et Paris), deux pour trois indicateurs (Grenoble et Lille), cinq pour quatre indicateurs (Metz, Nancy, Nice, Rouen, Tours) et une métropole pour tous les indicateurs (Saint-Etienne). Très difficile de parler d’avantage économique métropolitain, il n’y a plus que 6 métropoles sur les 22 qui semblent dans les clous.

Une autre façon de juger de l’effet métropolitain consiste à voir ce que cette appartenance explique dans les différences de taux de croissance ou de taux de chômage entre EPCI, en effectuant ce que l’on appelle des tests de comparaison de moyenne. J’ai réalisé ces tests, et j’ai effectué les mêmes pour juger d’un autre élément : l’effet de l’appartenance régionale. Ceci permet de voir si ce qui compte dans les “performances”, c’est plutôt d’être métropole, ou plutôt d’appartenir à telle ou telle région. Ou ni l’un ni l’autre, ou bien les deux.

variance expliquée par le fait d’avoir le statut de métropole et l’appartenance régionale, en % de la variance totale

Résultat des courses ? Le fait d’être métropole plutôt que communauté urbaine, communauté d’agglomération ou communauté de communes explique au mieux 2% des différences territoriales observées, autrement dit pratiquement rien. En revanche, l’appartenance régionale joue : très fortement sur le taux de chômage, fortement sur les soldes naturels et migratoires, et plus faiblement sur le taux de croissance de la population et de l’emploi. Dans tous les cas, les effets régionaux sont très supérieurs aux effets métropoles, comparativement négligeables. Pour le dire autrement, si vous voulez savoir quelque chose de la “performance” d’un territoire, mieux vaut savoir dans quelle région il se trouve, plutôt que de savoir s’il s’agit d’une métropole ou non.

Pour finir je vous propose ci-dessous le tableau complet pour les 22 métropoles, classées de la plus peuplée en 2013 à la moins peuplée. Les cellules surlignées correspondent aux valeurs des indicateurs inférieures à la moyenne pour l’ensemble des territoires, ce qui vous permet de visualiser les variables pour lesquelles les métropoles “sous-performent”.

valeurs de différents indicateurs pour les 22 métropoles instituées et pour l’ensemble des EPCI. En jaune les valeurs inférieures aux moyennes pour les taux de croissance et supérieures à la moyenne pour le taux de chômage

Covid 19 : un désavantage des métropoles ? (épisode 31)

J’ai passé beaucoup de temps et dépensé beaucoup d’énergie depuis plusieurs années, avec mon collègue Michel Grossetti, à déconstruire le discours selon lequel les métropoles auraient un avantage économique sur les autres catégories de territoires. Je vous propose aujourd’hui d’analyser la situation de ces mêmes métropoles vis-à-vis de la pandémie en cours pour vous montrer que, malgré les apparences, elles n’ont pas de désavantage particulier.

Pour cela, j’ai collecté les données de Santé publique France sur les décès par département du 18 mars au 10 mai 2020. J’ai ensuite distingué de deux façons les départements. La première façon consiste à rassembler dans une même catégorie “métropoles” les départements où sont localisés les 22 métropoles instituées par la loi. Il y a une petite difficulté pour Paris, qui s’étend sur toute l’Ile-de-France, j’ai donc considéré que la métropole de Paris était constituée de tous les départements franciliens. J’ai procédé en complément d’une deuxième façon, en m’appuyant sur une typologie européenne basée principalement sur les densités de population, qui distingue les départements urbains, les départements ruraux, et entre les deux les départements dits intermédiaires (vous pouvez visualiser la carte ici). Le nombre de départements français dits urbain est de 14 : 7 départements d’Ile-de-France, auxquels il faut ajouter Lille, Marseille, Lyon, Bordeaux, Nantes, Toulouse et Nice.

En apparence, les métropoles pâtissent d’un désavantage important, lorsqu’on regarde par exemple le taux de mortalité de l’ensemble des métropoles et qu’on le compare au taux de mortalité hors métropoles.

Taux de mortalité par million d’habitants

A la date du 10 mai 2020, le taux de mortalité est de 305 décès par million d’habitants pour les métropoles, contre 178 pour les autres territoires. Il monte même à 336 pour les départements dits urbains, contre 240 pour les départements intermédiaires et 149 pour les départements ruraux.

Mais il s’agit là de moyennes, dont la valeur peut dépendre fortement de quelques observations, ce qu’il convient de vérifier. S’agissant de la distinction métropoles/hors métropoles, je vous propose de refaire le calcul sans Paris (sans l’Ile-de-France donc). S’agissant de la distinction urbain/intermédiaire/rural, je vous propose d’enlever l’Ile-de-France et Grand Est, dont la plupart des départements sont “intermédiaires”.

Taux de mortalité par million d’habitants, hors Ile-de-France (graphique de gauche) et hors Ile-de-France et Grand Est (graphique de droite)

Les différences entre les ensembles de territoires ont pratiquement disparu. Toujours au 10 mai 2020, le taux de mortalité des métropoles hors Paris tombe à 194 décès par million d’habitants, contre 178 pour les départements hors métropoles. Les taux sont de 155 pour les départements urbains, 144 pour les départements intermédiaires et 132 pour les départements ruraux. La réponse à la question du titre est donc plutôt négative, sauf à considérer qu’il n’y a qu’une métropole en France, Paris. De même, penser qu’il y a un avantage du rural face à l’épidémie s’avère erroné.

Pour conclure, une petite digression. Nous nous sommes toujours défendus, Michel Grossetti et moi-même, de porter un discours “anti-métropole”, ou bien “pro-rural”, étiquettes que certains aimeraient bien nous coller. Ce que nous nous efforçons de montrer, c’est que les catégories de “métropole”, de “ville moyenne” ou de “rural”, sont souvent trompeuses car elles ne sont pas homogènes. C’est exactement la même chose que je viens de montrer dans ce billet, qui invite avant tout à se méfier non pas des métropoles, mais des moyennes.

Les approximations de l’Insee : nouvel épisode

Dans mon dernier billet, j’ai analysé une note de l’Insee relative à l’évolution de la population par commune de 2011 à 2016 et à la façon (erronée) dont la presse s’en est fait l’écho. Une des critiques essentielles adressées à l’Insee portait sur les limites des comparaisons de moyenne par catégorie de territoire, qui masquent l’hétérogénéité au sein de chaque catégorie.

Je découvre aujourd’hui une nouvelle note de l’Insee, sur le même jeu de données mais sur un autre découpage géographique par EPCI (Etablissements Publics de Coopération Intercommunale), parmi lesquels on distingue les métropoles (ME) au nombre de 22, les Communautés Urbaines (CU) au nombre de 11, les Communautés d’Agglomérations (CA) au nombre de 221 et les Communautés de Communes(CC) au nombre de 1005, soit 1259 EPCI au total.

Cette nouvelle note est titrée « Démographie des EPCI : la croissance se concentre dans et au plus près des métropoles ». On y trouve des choses intéressantes (notamment les cartes), mais aussi, hélas, toujours les mêmes erreurs et approximations, qui conduisent à des conclusions contestables. Comme les données utilisées par l’Insee sont mises en ligne en annexe du document, j’ai pu me livrer à quelques traitements. Je vous propose de me concentrer sur un point pour illustrer mon propos : la comparaison par catégories d’EPCI du taux de variation annuel de la population sur la période 2011-2016, résumée notamment par le graphique ci-dessous.

(Il y aurait encore une fois des choses à dire pour éviter toute mauvaise interprétation : les métropoles dont il s’agit sont les métropoles instituées par la loi, qui ont peu à voir avec les métropoles au sens des économistes ou des géographes. On notera également que pour ceux qui considèrent que la seule vraie métropole française (au sens de Saskia Sassen par exemple), Paris, ne va pas très bien si l’on en juge par l’indicateur retenu, mais cet indicateur a-t-il seulement du sens ? Je passe).

Le cœur de mon propos est le suivant : une fois encore l’Insee propose des comparaisons de moyenne, mais oublie de s’interroger sur la dispersion au sein de chaque catégorie, que l’on peut mesurer par exemple par l’écart-type. Terme étrange pour beaucoup, mais finalement assez simple, qui correspond  à la moyenne des écarts à la moyenne : un écart-type important signale que c’est un peu le bazar au sein de la catégorie, un écart-type faible que c’est plutôt homogène (exemple pédagogique : pour une classe de lycée où tous les élèves ont 10 à une épreuve, la moyenne de la classe sera de 10 et l’écart-type de 0 ; pour une classe où la moitié des élèves a zéro et l’autre moitié a 20, la moyenne sera toujours de 10, mais l’écart-type sera de 10. Vous conviendrez que ces deux classes diffèrent sensiblement, ce que la moyenne ne montre pas, puisqu’elle est identique dans les deux cas). C’est vraiment facile de calculer ces écarts-types, voilà ce que ça donne.

Tableau 1 : moyenne et écart-type des taux de croissance de la population des EPCI, 2011-2016, non pondérés

EPCI Moyenne Ecart-type Nombre
CC          0.25          0.75        1 005
CA          0.36          0.64           221
CU          0.27          0.43             11
ME          0.60          0.55             22
Total          0.27          0.73        1 259

La moyenne simple des Métropoles est effectivement sensiblement supérieure à celle des autres catégories d’EPCI, mais l’écart-type de 0,55 est loin d’être négligeable, il est notamment supérieur à celui des Communautés Urbaines, qui sont donc moins hétérogènes. Réciproquement, pour les CC et les CA, l’importance des écarts-types suggère que si, en moyenne, leur croissance est plus faible, certaines présentent des taux de croissance très forts (bien plus forts que les plus dynamiques des ME en vérité) et d’autres très faibles. Dès lors, il n’est pas possible d’avancer une proposition générale du type « les métropoles sont plus dynamiques que les autres catégories de territoires », puisque cela dépend desquelles, idem pour chacune des catégories retenues, d’ailleurs.

On peut aller plus loin dans l’analyse, en faisant un peu d’économétrie, ce que tous les statisticiens de l’Insee savent faire, et sans doute mieux que moi, si bien que je me demande pourquoi ils ne le font pas. Plutôt que de calculer des moyennes par catégorie d’EPCI, il s’agit par exemple de procéder à des comparaisons de moyenne non pas par grande catégorie, mais en régressant le taux de croissance de la population 2011-2016 de chaque EPCI sur la catégorie à laquelle elle appartient. Ceci permet de savoir si les différences de moyenne observées entre catégories sont statistiquement significatives.

Je me suis livré à cet exercice et la conclusion est implacable : les différences de moyenne ne sont pas statistiquement significatives. Par rapport à la catégorie de référence « Communautés d’Agglomération », seule la catégorie « Communautés de Communes » présente un coefficient significativement plus faible et encore, loin du seuil de 1%. Pas de différence statistiquement significative aux seuils de 1, 5 ou 10%, en revanche, entre CA, CU et ME. On note de plus que cette typologie en EPCI n’explique quasiment rien des différences géographiques de taux de croissance, le R² étant de moins de 0,5% (ce qui signifie que cette typologie explique seulement 0,5% des différences observées, que donc d’autres choses en expliquent… 99,5%).

Pour les initiés, voici le tableau de résultat :

variable expliquée : taux de croissance 2011-2016 de la population par EPCI, données Insee

Coefficient écart-type t P>t
CA référence
CC –            0.11              0.05 –            1.99              0.05
CU –            0.08              0.22 –            0.37              0.71
ME              0.25              0.16              1.53              0.13
Constante              0.36              0.05              7.28                   –

Compte-tenu des données disponibles, on peut s’amuser à procéder à d’autres estimations. Si l’on régresse les taux de croissance non plus sur les catégories d’EPCI mais sur les populations de 2011, pour identifier un éventuel effet taille initiale de la population, on aboutit à la même conclusion : le modèle global est très mauvais (R² inférieur à 0,5%) et le coefficient associé à la taille initiale n’est pas significatif au seuil de 1%.

Comme on dispose également du département d’appartenance de la commune la plus peuplée de chaque EPCI, j’ai régressé les taux de croissance des EPCI sur ces départements. Cette fois les choses s’améliorent, le R² monte à 40% environ. Je pense que si l’on agrégeait par région, cela s’améliorerait encore un peu, car, comme les cartes le montrent, on voit bien que les dynamiques de population sont macro-régionales, avec un avantage aux territoires de l’Ouest et du Sud.

Je réitère donc mon conseil à l’Insee : présentez dans vos documents les écarts-types, et procédez en amont de vos commentaires à quelques régressions. Vos documents sont « grand public », ces calculs n’ont sans doute pas vocation à y figurer, mais cela vous permettrait de ne pas dire n’importe quoi, dans vos commentaires.

Les journalistes racontent n’importe quoi (mais c’est un peu la faute de l’Insee)

L’Insee vient de publier les chiffres de la population 2016 par commune et en a profité pour mettre en ligne une étude France entière et des études par région sur l’évolution de la population 2011-2016, comparée à la période 2006-2011. L’étude France entière s’intitule “Entre 2011 et 2016, les grandes aires urbaines portent la croissance démographique française”, vous la trouverez ici.

La presse s’en est fait l’écho, et le moins qu’on puisse dire, c’est que certains racontent n’importe quoi. Mon sentiment : c’est en partie la faute de l’Insee et en partie en lien avec le déficit de formation en statistique des journalistes. La prise de Came ne doit pas être totalement étrangère au problème, également.

Reuters, les métropoles et les grandes aires urbaines : un problème de vocabulaire

Premier exemple, un article de Reuters intitulé “Les métropoles polarisent la population mais Paris se vide”, où l’on peut lire ceci :

En écho au mouvement des “Gilets jaunes” parfois présenté comme la confrontation entre la France rurale et des villes petites et moyennes et celle des grandes métropoles, cette étude souligne que la croissance des grandes aires urbaines a porté la croissance démographique de la France entre 2011 et 2016.

Où est le problème ? Dans le vocabulaire. L’Insee brasse des statistiques par aire urbaine (771 France entière) et distingue, parmi elles, les grandes aires urbaines, dont vous trouverez la définition, plutôt complexe, ici : “un ensemble de communes, d’un seul tenant et sans enclave, constitué par un pôle urbain (unité urbaine) de plus de 10000 emplois, et par des communes rurales ou unités urbaines (couronne périurbaine) dont au moins 40 % de la population résidente ayant un emploi travaille dans le pôle ou dans des communes attirées par celui-ci”.

Reuters considère que grande aire urbaine = métropole. Peut-on vraiment les en blâmer ? Sans doute pas, d’où mon sentiment que l’Insee, pour le coup, est fautif. En effet, les grandes aires urbaines sont au nombre de 241. On y trouve Paris, Lyon et Marseille, bien sûr, mais aussi Ancenis (10 000 habitants), les Herbiers (19 000), Figeac (26 000), etc. Bref, beaucoup de villes que la plupart d’entre vous considèrent, à juste titre, comme moyennes voire petites.

Elles concentrent 78% de la population en 2016 d’après les chiffres de l’Insee. On trouve en leur sein, comme précisé dans la définition, de nombreuses communes rurales, si bien qu’avoir choisi le terme d’aires urbaines pour parler de territoires composés en partie d’espaces à faible ou très faible densité, c’est moyen… Cela laisse penser que le “rural” se réduit à peau de chagrin (4,5% de la population hors influence des aires urbaines si l’on retient la typologie de l’Insee), ce qui est pour le moins contestable, comme expliqué en détail ici.

Les statistiques, la Croix et la bannière

Deuxième exemple, un article de la Croix intitulé “La banlieue attire de moins en moins d’habitants”, où l’on peut lire en sous-titre de la photo “les périphéries des grandes villes se vident au profit des « grands pôles urbains » de plus de 300 000 habitants” et dans le corps du texte : « les villes de banlieues attirent de moins en moins, au profit des centres-villes… qui se repeuplent » [Edit 29/12 : le journaliste de la Croix m’a écrit pour m’indiquer qu’il avait modifié la légende de la photo suite à la lecture de mon billet].

Petite devinette pour comprendre l’erreur : Pierre et Jacques font la course, qui consiste à faire deux fois le tour d’un stade. Pierre va beaucoup plus vite que Jacques lors du premier tour de piste (disons 4 fois plus vite). Lors du deuxième tour, Pierre ralentit alors que Jacques maintient son allure, de telle sorte que maintenant, Pierre ne court pas 4 fois plus vite que Jacques, mais seulement deux fois plus vite. Question : lors du deuxième tour, qui va plus vite, Pierre ou Jacques ?

Question stupide, n’est-ce pas ? Pas tant : les journalistes de la Croix se sont plantés dans la réponse, en tout cas. Ce que montre l’Insee, en effet, ce n’est pas que les grands pôles urbains (les “centre-villes” pour la Croix) croissent plus vite que leur couronne (les “banlieues” pour la Croix), elles croissent toujours moins vite (0,4% pour les premières contre 0,8% pour les dernières), mais l’écart s’est réduit, le taux de croissance n’est plus que 2 fois supérieur, contre 4 fois supérieur entre 2006 et 2011 (0,3% contre 1,2%), d’où mon exemple. Donc affirmer que les périphéries se vident au profit des grands pôles urbains, comment dire…

Des commentaires moyens sur les moyennes

Le vocabulaire associé à la typologie de l’Insee me semble très critiquable, je l’ai dit. Le fait ensuite de comparer des moyennes par paquet d’aires urbaines l’est tout autant, car il masque l’hétérogénéité au sein de chaque catégorie.

Quand l’Insee affirme que les grandes aires urbaines portent la croissance de la population entre 2006 et 2011, c’est parce que cette catégorie a connu un taux de croissance de 0,5% en moyenne, contre 0,4% France entière. Sauf que les taux varient, au sein de cette catégorie, entre -1,6% et +2,6%.

Si l’on restreint aux 20 plus grandes aires urbaines, ce qui correspond sans doute mieux à ce que l’on pense être les “métropoles”, idem, ça varie beaucoup, comme le montre ce graphique tiré du document :

Vous remarquerez que parmi les 20 plus grandes aires urbaines, 11 ont un taux de croissance de la population inférieur ou égal au taux de croissance France entière (0,4%)… (En complément, je me suis amusé, à partir des données mises en ligne, à tester le lien entre la taille des départements et leur taux de croissance, j’ai fait de même pour les 241 grandes aires urbaines, cela ne donne rien, on ne trouve pas d’effet taille).

Petite recommandation à l’Insee, de ce fait : quand vous présentez des moyennes dans un tableau, indiquez également l’écart-type. Faites des petits tests de comparaison de moyenne, également, pour éviter des commentaires trop rapides.

La Came, encore et toujours…

S’intéresser à la géographie des taux de croissance de la population n’est pas totalement inutile. Mais il faut toujours faire attention aux catégories et aux indicateurs que l’on utilise. A ce titre, ce que montrent avant tout les chiffres publiés par l’Insee, c’est qu’on retrouve plutôt des dynamiques macro-régionales, avec des territoires (grands, moyens et petits) dynamiques à l’Ouest et au Sud, et d’autres (grands, moyens et petits) moins dynamiques dans un grand quart Nord-Est. Quand l’Insee affirme ensuite que “la proximité d’une grande métropole favorise la croissance de population départementale”, ça manque d’éléments de preuve : je ne suis pas sûr que la dynamique vendéenne soit lié à la proximité de Nantes, ni que la Haute-Savoie croisse en lien avec Lyon…

Mais même cet exercice de comparaison de taux de croissance est critiquable : plus ou moins consciemment, on considère qu’un territoire qui connaît une croissance de la population plus forte va bien, et que celui qui connaît une croissance plus faible va mal. Or, la croissance forte observée à Bordeaux, Nantes, Montpellier, …, n’est pas sans poser problème en terme d’effets de congestion et de montée du prix du foncier, je ne suis pas sûr qu’un territoire moins “dynamique” soit en plus mauvaise position et que sa situation soit moins enviable…

Comparer les taux de croissance, enfin, c’est considérer, là encore plus ou moins consciemment, que les territoires sont en concurrence les uns avec les autres dans le cadre d’une sorte de tournoi de foot. Or, ce n’est pas le cas, les territoires sont traversés par des processus socio-économiques, des interdépendances qui les dépassent, qu’il faut identifier, et s’interroger sur la façon de mieux régler les problèmes que cela pose.

Je fais le vœu que l’année 2019 soit sous le signe de la cohésion des territoires, plutôt que sous celui, calamiteux, de la concurrence entre eux. Cela passe par des réflexions sur la façon dont on les regarde, et sur les représentations qui sous-tendent notre regard.

Les villes moyennes à l’épreuve des transitions

C’est le titre d’une rencontre organisée par la Fondation Jean Jaurès, le 15 janvier prochain, de 18h30 à 19h30. J’y participerai aux côtés de Philippe Archias (directeur Innovation urbaine au sein du groupe Chronos) et de Benoît Calatayud (membre de l’Observatoire Énergie et développement durable de la Fondation Jean Jaurès), débat animé par Achille Warnant (coordinateur pour la Fondation Jean Jaurès du rapport sur les villes petites et moyennes). Détails et inscriptions ici, ceux qui ne peuvent être sur place pourront voir le débat en direct (ou plus tard) sur la même page, ou bien ci-dessous :

Ce débat s’inscrit dans un cycle qui a commencé en septembre dernier autour de l’ouvrage d’Olivier Razemon, “comment la France a tué ses villes”, visible ici ; épisode 2 le 4 décembre avec pour titre “Les métropoles, le grand pari ?” autour d’Hervé le Bras et de Patrick Joly, visible ici.

Je devrais dire assez vite que la catégorie “villes moyennes” est une catégorie floue, aussi floue que celle de “métropole” c’est vous dire, à consommer avec modération, donc (voire à ne pas consommer du tout, je me dis de plus en plus souvent).

Pour débattre ensuite sans doute de manière plus intéressante autour des problématiques de mobilité, de logement, de recrutement, …, mais, là encore, il s’agit de problèmes non exclusivement “hors métropoles”, j’ai quelques anecdotes croustillantes en stock…

Crévindiou ! Le “rural” n’est pas mort…

Petit article remarquable de Laurent Rieutort, Professeur des Universités en géographie humaine à Clermont-Ferrand, pour la Revue Population & Avenir : « La ruralité en France : des potentiels oubliés ? » (n°731, p. 4-7, disponible sur Cairn (€)).

Il exploite de nouvelles données produites par l’Insee, sur la base d’une méthodologie européenne proposée par Eurostat, permettant de dépasser les limites du découpage en Aires Urbaines (je ne développe pas, voir son article ou ce document de l’Insee, également passionnant).

Cette méthodologie permet de distinguer les communes densément peuplées (au moins 50% de la population vit dans des zones de densité supérieure à 1500 habitants au km²), les communes de densité intermédiaire (même logique pour des densités entre 300 et 1500 hab/km²), les communes peu denses (entre 25 et 300 hab/km²) et les communes très peu denses (moins de 25 hab/km²).

Il analyse ensuite la dynamique démographique (évolution de la population, impact du solde naturel et du solde migratoire) et la dynamique économique (évolution de l’emploi, distinction entre activité présentielle et productive, types d’emploi (ouvriers, employés, cadres, …)).

Avec des résultats qui vont faire pâlir les adeptes du tout-métropole d’un côté, et de la France périphérique, de l’autre (j’agrège dans le tableau ci-dessous quelques résultats picorés dans son article, en me focalisant sur 2008-2013. Les résultats sur une période plus longue (1999-2013) ou sur la période antérieure à la crise (1999-2008) sont globalement les mêmes, voir l’article) :

densité

++ + France
part dans la population (2013) 35.50% 29.10% 31.30% 4.10% 100%
part dans l’emploi (2013) 36.30% 27.40% 32.20% 4.10% 100%
croissance démographique totale 2008-2013 0.34% 0.37% 0.83% 0.40% 0.50%
croissance naturelle 2008-2013 0.74% 0.26% 0.18% 0.03% 0.40%
croissance migratoire 2008-2013 -0.41% 0.10% 0.63% 0.37% 0.09%
croissance actifs occupés 2008-2013 -0.32% -0.60% 0.09% -0.27% -0.26%
dont cadres, prof. intellect. sup. et prof. intermédiaires 0.72% 0.52% 1.57% 1.54% 0.90%

++ : zones très denses, + : zones denses, – : zones peu denses, — : zones très peu denses

Les espaces peu denses et très peu denses ont une croissance démographique loin d’être catastrophique, supérieure aux espaces denses et très denses. Ceci est le produit d’un solde naturel faible (population plus âgée en moyenne) plus que compensé par un solde migratoire bien plus positif.

Côté dynamique économique, l’évolution est également plus favorable (ou moins défavorable) que celle observée dans les espaces denses et très denses, y compris pour les CSP supérieures. L’auteur explique dans le texte que ces évolutions sont pour partie tirées par le développement de la sphère présentielle, certes, mais aussi par le développement des activités productives (l’agriculture représente 10% des emplois dans les espaces très peu denses et l’industrie 20% des emplois).

Il conclut par trois points que je ne peux que partager :

  • On observe une diversité de trajectoires dans le monde urbain et rural, l’effet taille ne permet pas de résumer les processus économiques,
  • Plutôt que de chercher le « territoire performant », analysons les interrelations et les interdépendances entre les territoires et répondons aux enjeux de connexion, d’animation et de gouvernance,
  • N’oublions pas les territoires hors métropoles (les communes denses et très denses des 15 métropoles institutionnelles françaises concentrent 40% des actifs occupés, ça fait du monde en dehors), qui ont « le sentiment d’être en marge de la société, alors qu’elles ne sont pas condamnées et enregistrent souvent un renouveau démographique, socio-économique, et un niveau élevé d’innovations et de créativité » (page 7).

Vous allez croire que je parle de ce travail parce qu’il rejoint les conclusions de mes propres travaux et qu’il contredit les thèses à la Davezies/Guilluy, thèses primaires mais désormais caduques ? Non. C’est le cas, mais ce n’est pas la raison principale. J’en parle parce qu’il apporte des éléments de preuve très solides, à partir de données nouvelles et d’une méthodologie rigoureuse.

Ça fait du bien de lire des conclusions certes complexes mais justes, plutôt que des affirmations séduisantes mais tellement fausses.

La France périphérique ? Christophe Guilluy raconte n’importe quoi…

Dans notre dernière tribune pour Le Monde (voir ici ou ), Michel Grossetti et moi-même dénoncions un discours faisant de quelques grandes villes (les “métropoles”) l’alpha et l’omega de la création de richesses et d’emplois, en expliquant que ce discours sous-tendait deux idéologies, l’une “progressiste” (les métropoles sont l’avenir de la France, soutenons-les), l’autre “réactionnaire” (à soutenir les métropoles, on oublie la France périphérique qui se meurt et devrait se révolter).

Dans nos travaux mettant en débat ce discours, nous “entrons” par une critique de l’idéologie “progressiste”, portée de manière plus ou moins nuancée par des chercheurs comme Davezies, Levy, Askenazy et Martin, … A plusieurs reprises, on m’a d’ailleurs demandé si on comptait s’attaquer un jour à l’autre idéologie, portée par Christophe Guilluy dans son ouvrage de 2015, “La France périphérique. Comment on a sacrifié les classes populaires”, ou dans son dernier ouvrage, “Le crépuscule de la France d’en haut”.

J’explique alors, précisément, que les travaux de Guilluy ne sont que l’autre face de la même pièce, ce dernier reprenant la thèse des premiers (les métropoles concentrent et concentreront toujours plus les meilleurs emplois et les meilleurs revenus), mais lui se focalise ensuite sur les classes populaires, concentrées hors métropoles et délaissées par les élites. Il n’en demeure pas moins que pointer du doigt ses erreurs d’analyse, ou plus précisément les éléments de preuve empirique qu’il avance, comme nous l’avons fait pour la note Terra Nova de Davezies et Pech et celle d’Askenazy et Martin pour le CAE, par exemple, est loin d’être inutile.

Ça tombe bien : c’est l’exercice auquel vient de se livrer Olivier Galland, sur Télos, dans un billet synthétique et efficace, je vous recommande sa lecture. Et comme il s’agit, j’insiste, du même discours pour deux idéologies, ce que dit Galland de Guilluy, c’est autant d’éléments contre Davezies, Levy et consorts…

La circulation invisible des richesses : quand le Cantal, l’Aveyron et la Lozère viennent au secours des Métropoles

Lorsqu’on analyse la géographie des PIB par habitant et celle des Revenus par habitant, on constate rapidement une déconnexion forte entre les deux, le cas le plus extrême concernant l’Ile-de-France, dont le PIB par habitant est environ 60% supérieur à la moyenne, pendant que son Revenu par habitant n’est supérieur que d’environ 20%. Il n’en faut pas plus à quelqu’un comme Jacques Levy pour affirmer alors que « les contribuables des villes les plus productives financent à fonds perdus les territoires urbains les moins efficaces » (source ici).

Je ne reviendrai pas sur les nombreuses limites du PIB par habitant comme indicateur de performance des régions, j’en ai déjà (trop) parlé, je vous invite à parcourir cette tribune du Monde ou d’aller voir, pour plus de détails, l’article co-écrit avec Michel Grossetti Je préfère me concentrer sur les éléments explicatifs de la déconnexion PIB/Revenu, pour insister sur un mécanisme contre-intuitif, dont l’importance vient d’être mise en évidence dans un article tout juste publié.

Quand Jacques Levy affirme que « les contribuables des villes les plus productives financent à fonds perdus les territoires urbains les moins efficaces », il a en tête un mécanisme et un seul, celui de la redistribution des revenus assurée par l’Etat : certains territoires produisent plus de richesses que d’autres, l’Etat y collecte logiquement plus d’impôts qu’il reverse sous forme de prestations aux habitants des autres territoires. Notons en passant que l’Etat ne procède pas à une redistribution spatiale des revenus, mais à une redistribution sociale : en forçant le trait, il prend aux « riches » pour donner aux « pauvres », comme « les riches » sont concentrés en certains lieux (notamment sur Paris) et « les pauvres » dans d’autres lieux (« les territoires urbains les moins efficaces » dirait Levy), la redistribution sociale devient involontairement spatiale.

Ce faisant, on oublie d’autres mécanismes essentiels de la circulation invisible des richesses : le premier d’entre eux relève du transfert opéré entre les actifs d’aujourd’hui et les actifs d’hier, autrement dit les retraités. Une part non négligeable de la déconnexion entre PIB et Revenu par habitant de l’Ile-de-France s’explique par le fait que les actifs franciliens, une fois à la retraite, vont se localiser un peu partout sur le littoral. Les actifs franciliens d’aujourd’hui financent donc les retraites des actifs franciliens d’hier, localisés hors région capitale. Un autre mécanisme important relève du fait que de nombreux actifs participant à la création de richesse en Ile-de-France résident hors Ile-de-France : ils créent du PIB dans la région capitale mais perçoivent leurs revenus hors région capitale. C’est vrai de toutes les régions limitrophes, le cas le plus emblématique étant celui de la Picardie, 13% des actifs y résidant travaillant en Ile-de-France.

Tout ceci est plutôt bien connu des chercheurs travaillant sur ces sujets. Un autre mécanisme moins connu vient d’être étudié par Pierre Bouché, Elisabeth Decoster et Ludovic Halbert dans un article pour la revue Géographie, Economie, Société intitulé « L’épargne réglementée, une géographie méconnue de la circulation de richesse en France ». Ces auteurs s’intéressent à l’épargne sur Livret collectée par la Caisse des Dépôts et Consignations, qui sert massivement à financer le logement social. Les sommes concernées ne sont pas négligeables : on apprend dans l’article que la Direction du Fonds d’Épargne gère 250 Milliards d’euros en 2013, dont environ 55 % sont distribués sous forme de prêts. Comme les lieux de collecte de l’épargne diffèrent des lieux d’investissement, on observe là encore une circulation invisible des richesses qui avait jusqu’à présent échappé aux observateurs.

Que montrent-ils ? Que certains départements épargnent beaucoup plus qu’ils ne perçoivent en termes d’investissement, à commencer par le Cantal (solde négatif de 72 %), l’Aveyron, la Haute-Loire, la Nièvre, la Lozère, ou encore la Manche (-56 %). A l’inverse, d’autres départements affichent des soldes positifs, c’est-à-dire que les montants des prêts qui leurs sont distribués sont plus élevés que ce que les encours observés ne laisseraient supposer. « Il s’agit de départements accueillant une agglomération de grande taille comme le Nord (Lille), la Haute-Garonne (Toulouse), la Gironde (Bordeaux), le Rhône (Lyon), l’Hérault (Montpellier), ou les départements franciliens, aux exceptions de Paris et, surtout, des Yvelines. La Seine-Saint-Denis affiche ainsi le solde positif le plus élevé de France avec +180 % (…) ».

Le Cantal, l’Aveyron et la Lozère viennent au secours de la Seine-Saint-Denis, Lille, Toulouse, Bordeaux, Lyon et Montpellier. Les « pauvres inefficaces » qui financent les « riches efficaces », voilà qui devrait en consoler certains, voire, soyons fous, les inciter à regarder autrement les dynamiques territoriales…