Votes et gradient d’urbanité : une relation invalidée

Jacques Lévy est intervenu lundi 25 avril 2022 sur France Culture dans Le temps du débat, puis de nouveau le 1er mai, toujours sur France Culture, dans l’émission l’Esprit Public, pour commenter les résultats des élections. Son analyse s’appuie sur un travail cartographique conséquent visible ici.

Conformément à une thèse qu’il défend depuis longtemps (vous trouverez l’essentiel de ses idées appliquées au vote du 21 avril 2002 dans ce texte), il considère que les différences géographiques de vote s’expliquent avant tout par ce qu’il appelle les gradients d’urbanité, bien plus que par les différences de catégorie sociale, de diplôme ou d’âge.

Son idée forte est la suivante : l’urbain dense est le lieu de la diversité, de l’ouverture, de la tolérance, de la connexion au monde, dès lors, baigner dans des environnements à forte urbanité conduirait à voter pour des partis “de gouvernement”, “universalistes”, alors que quand l’urbanité est faible, on est enclin à voter pour des partis “protestataires”, “populistes”, “tribunitiens”. C’est cela qui expliquerait les votes, plus que le fait d’être jeune ou vieux, d’être diplômé du supérieur ou non diplômé, ouvrier, employé ou cadre supérieur.

Pour mesurer les gradients d’urbanité, Jacques Lévy s’appuie sur les zonages d’étude de l’INSEE, et dans ses dernières analyses, sur le zonage en aires d’attraction des villes. Chaque commune peut être rattachée à l’un des 8 gradients d’urbanité, qui sont définis sur la base d’une double distinction : en fonction de la tranche d’aire d’attraction des villes, d’une part, et de la situation de la commune par rapport à la commune centre de l’aire, d’autre part.

La commune qui présente le gradient d’urbanité le plus fort, c’est Paris, elle correspond au gradient 1. Suivent les communes de la banlieue de Paris, ainsi que les communes centres des aires de plus de 700 000 habitants, toutes étant de gradient 2 : les communes de la banlieue sont moins urbaines que Paris, mais elle bénéficient en quelque sorte de son ruissellement ; les communes centres des très grandes aires, ce n’est pas Paris, mais l’urbanité y est forte. Et ainsi de suite, jusqu’aux communes hors aires d’attraction des villes, de gradient 8, à l’urbanité la plus faible.

Pour mesurer l’impact des gradients d’urbanité, il procède à des analyses cartographiques, qui permettent de visualiser la géographie des votes en fonction de ces gradients, pour conclure le plus souvent que son analyse est validée. Il va cependant un cran plus loin : conscient que d’autres éléments peuvent jouer, notamment les effets de diplôme, de catégorie sociale ou d’âge, il affirme que les gradients d’urbanité sont plus explicatifs que ces autres éléments, sur la base d’un raisonnement quelque peu opaque et pour le moins curieux (voir ici, à partir de 5’30).

L’analyse de Jacques Lévy a fait l’objet de critiques sérieuses, depuis déjà longtemps (voir par exemple l’article de Fabrice Ripoll et Jean Rivière). Mon objectif ici est d’ajouter une pierre à la critique, en montrant qu’elle est invalidée empiriquement, sur la base des résultats du vote du premier tour des élections présidentielles 2022 de l’ensemble des communes de France métropolitaine.

Pour cela, il convient de définir précisément quels résultats on devrait obtenir si la “théorie” du gradient d’urbanité était vérifiée : on devrait observer i) un score des candidats de gouvernement qui augmente quand le degré d’urbanité augmente, ii) un score des candidats protestataires qui diminue quand le degré d’urbanité augmente, iii) un pouvoir explicatif du gradient d’urbanité supérieur au pouvoir explicatif d’autres distinctions (âge, CSP, niveau de diplôme), iv) un effet du gradient d’urbanité qui est observé à caractéristiques sociales égales par ailleurs.

Pour valider ou invalider ces propositions, je considère d’abord comme candidats de gouvernement Macron, Jadot, Pécresse et Hidalgo, et comme candidats protestataires les huit autres candidats, classés à gauche pour quatre d’entre eux (Mélenchon, Roussel, Poutou, Arthaud) et à droite pour les quatre autres (Le Pen, Zemmour, Lassalle, Dupont-Aignan). Sur cette base, je procède aux traitements suivants :

  1. j’analyse les scores moyens obtenus par chaque candidat, en fonction du gradient d’urbanité : si la théorie est vérifiée, le score moyen de Macron, Jadot, Pécresse et Hidalgo doit augmenter avec le degré d’urbanité, celui des huit autres candidats doit diminuer. Le gradient d’urbanité doit en outre expliquer une part importante des différences de vote observées entre communes,
  2. j’analyse parallèlement l’influence d’une autre variable que le gradient d’urbanité : la part des diplômés du supérieur par commune. Si la théorie est validée, cette variable doit expliquer une part moins importante du vote que le gradient d’urbanité,
  3. j’analyse dans un même modèle le gradient d’urbanité et la part des diplômés du supérieur, afin d’évaluer l’impact du gradient d’urbanité à niveau de diplôme donné. Si la théorie fonctionne, le gradient d’urbanité doit exercer l’influence attendue sur les scores des candidats de gouvernement et des candidats protestataires.

Commençons par cette première proposition, en mesurant l’impact du gradient d’urbanité sur les votes des 12 candidats. Dans le tableau, vous pouvez lire le score obtenu par chaque candidat dans la commune de Paris (gradient 1), puis l’écart à ce score pour les gradients de 2 à 8. La dernière ligne renseigne sur le pourcentage des différences de votes entre communes expliquées par le gradient d’urbanité.

Scores au 1er tour de l’élection présidentielle de 2022 par gradient d’urbanité (score moyen des communes du gradient 1 et écart à ce score pour les autres gradients)

A titre d’exemple de lecture, le score d’Emmanuel Macron dans la commune de Paris est de 35,3%, celui de Yannick Jadot est de 7,3%. En moyenne, dans les communes de la banlieue de Paris et dans les communes centre des aires de plus de 700 000 habitants, le score d’Emmanuel Macron est inférieur de 6,4 points de pourcentage au score qu’il obtient sur Paris, et celui de Yannick Jadot est inférieur de 2 points de pourcentage à son score parisien. Sur la dernière ligne de ces deux candidats, on constate que les gradients d’urbanité n’expliquent que 7% des différences communales de vote Macron, et 21% des différences pour Jadot.

Globalement, s’agissant des candidats de gouvernement, on constate que les scores hors Paris sont tous inférieurs au bloc sur Paris intra-muros, ce qui va dans le sens de la théorie, mais dans sa version extrême, où l’urbanité serait réservée au cœur de la capitale, point d’urbanité en dehors. De plus, le gradient d’urbanité n’explique qu’une faible partie des différences entre communes (variance expliquée inférieure à 10%), hormis pour Jadot, candidat pour lequel la théorie « marche » un peu mieux, puisque la variance expliquée par le gradient d’urbanité est de 21% et que son score est continûment décroissant quand on va du gradient 1 à 8.

Pour les candidats protestataires, la théorie fonctionne plutôt bien pour Marine le Pen puisque son score est continûment croissant avec le gradient (à l’exception du gradient 8, son score y est inférieur aux gradients 6 et 7) et il explique 46% des différences observées. En revanche, le résultat est inverse au résultat attendu pour Mélenchon (avec un pouvoir explicatif du gradient important, mais totalement contraire à l’attendu, de 46%) et pour Zemmour (mais avec un faible pouvoir explicatif du gradient d’urbanité, qui n’explique que 2% des différences de vote entre communes). Les résultats de Mélenchon et de Zemmour constituent clairement le premier élément d’invalidation de la théorie des gradients d’urbanité.

Deuxième temps de l’analyse, l’examen de la deuxième proposition, qui consiste à étudier le jeu d’une autre variable explicative considérée comme moins déterminante par Jacques Lévy que le jeu du gradient d’urbanité. J’ai retenu la part communale des diplômés du supérieur, qui exerce une influence certaine sur les votes. Je compare simplement la part des différences expliquées par le gradient d’urbanité, d’un côté, et la part expliquée par la part des diplômés du supérieur, de l’autre.

Variance expliquée par le gradient d’urbanité et par la part des diplômés du supérieur en pourcentage de la variance totale, dans les votes au 1er de tour de 2022. Pour la variable “part des diplômés du supérieur”, l’analyse a été faite en retenant la valeur continue de la variable, et également en constituant huit groupes de communes (1/8 des communes à plus faible part, puis 1/8 des suivantes, etc.), pour avoir un nombre de classes équivalent au nombre de gradient d’urbanité.

On constate que pour sept des douze candidats, la part des diplômés explique mieux les différences communales de score que le gradient d’urbanité, pour deux l’explication est équivalente (Hidalgo et Poutou), et c’est seulement pour 3 qu’elle est moins explicative que le gradient d’urbanité (Mélenchon, Lassalle et Dupont-Aignan), mais dans un sens contraire à l’attendu pour Mélenchon rappelons-le. L’écart est particulièrement fort pour Macron (+24 points de pourcentage d’explication) et pour Jadot (+32 points). Ces résultats constituent le deuxième élément d’invalidation de la théorie.

Dernier temps essentiel de la démonstration, l’analyse intégrée des deux effets. L’erreur principale de Jacques Lévy consiste en effet à étudier gradient d’urbanité, CSP, âge et diplôme séparément, en les considérant comme indépendants. Or, la composition sociale des territoires varie fortement selon le gradient d’urbanité. De ce fait, les différences de scores par gradient peuvent résulter non pas de sa théorie (on est plus tolérant quand on vit dans un environnement urbain, donc on vote moins pour les partis protestataires), mais de différences de caractéristiques sociales (on est plus diplômés, donc on vote moins pour les partis protestataires, qu’on habite dans l’urbain ou dans le rural). C’est à cette condition qu’on pourra éventuellement identifier le jeu d’un effet géographique « pur ».

Ecarts au score de gradient 1 pour les gradients 2 à 8 à part des diplômés du supérieur égale par ailleurs. Les valeurs soulignées sont non significativement différentes de 0 au seuil de 1%.

On constate que, quand on neutralise l’effet “part des diplômés du supérieur”, les résultats pour tous les candidats des partis de gouvernement sont contraires à la théorie : leur score est supérieur dans les communes hors Paris, il est même continument croissant pour Macron quand on passe du gradient 1 au gradient 8 d’urbanité (c’est le cas également pour Pécresse).

S’agissant des candidats protestataires, les résultats de Roussel sont maintenant contraires à la théorie (coefficients tous négatifs, mais leurs valeurs sont faibles), et ceux de Mélenchon le restent. A l’inverse, quand on neutralise l’effet de diplôme, le score de Zemmour devient un peu plus conforme à la théorie, il améliore ses scores quand l’urbanité diminue, mais la part des différences expliquées reste faible (7%).

Cette troisième série d’éléments va dans le même sens que les deux séries précédentes. Dès lors, il nous semble possible de conclure que la théorie du gradient d’urbanité, qui veut que vivre dans l’urbain incite à voter pour des partis de gouvernement et que s’éloigner de l’urbain le plus dense (Paris intra-muros) conduise à voter pour des partis protestataires, d’autant plus qu’on s’en éloigne, est invalidée empiriquement.

Présidentielles 2022 : quelle(s) géographie(s) du vote ?

Les résultats du premier tour de l’élection présidentielle à peine tombés, des cartes sur la géographie du vote commencent à circuler. La tendance dominante consiste à proposer des cartes des candidats arrivés en tête, à l’échelle des communes (France Info par exemple) ou des départements (Huffigton Post, France Bleu), façon très réductrice de présenter les choses. C’est que cartographier les résultats du vote est un exercice périlleux et tout sauf anodin. Sur le sujet, je recommande particulièrement la lecture de cet article d’Aurélien Delpirou, joliment titré « l’élection, la carte et le territoire : la victoire en trompe l’œil de la géographie », qui date des dernières élections mais qui reste d’actualité.

Pour ma part, j’ai décidé de ne pas faire de carte, mais de me livrer à de petits exercices statistiques, avec en tête les interrogations suivantes : le score au premier tour d’Emmanuel Macron, de Marine Le Pen ou de Jean-Luc Mélenchon est-il plus important dans les communes rurales ou dans les communes urbaines ? En Ile-de-France, en Nouvelle-Aquitaine ou dans le Grand Est ? Dans les communautés de communes ou dans les communautés d’agglomération ? Parmi ces différents effets (effet rural/urbain, effet d’appartenance régionale ou effet d’inclusion dans tel ou tel type d’intercommunalité), quel est le plus déterminant ?

Pour commencer à apporter des réponses, j’ai exploité les résultats du premier tour des présidentielles 2022 à l’échelle des communes de France métropolitaine. Or, il s’avère que si on trouve bien des effets géographiques, ils sont variables selon les candidats, et ils n’expliquent pas tout.

Prenons l’exemple du caractère rural ou urbain des communes. Pour le mesurer, je me suis appuyé sur la grille communale de densité, qui permet de distinguer les communes dites rurales, qui sont très peu denses ou peu denses, et les communes dites urbaines, qui sont de densité intermédiaire ou très denses. Pour le vote Macron, il s’avère que le degré de densité « n’explique » que 4% des différences de score : ceci signifie que Macron fait des scores élevés, moyens et faibles sur les communes des différentes catégories de densité. Pour les votes le Pen et Mélenchon, en revanche, le degré de densité est plus déterminant, il « explique » 36% des différences de scores chez le Pen, et 38% chez Mélenchon, mais dans un sens opposé : le score de Marine le Pen diminue, et celui de Jean-Luc Mélenchon augmente, avec la densité. Autrement dit encore, le vote Le Pen est surreprésenté en milieu rural, le vote Mélenchon est surreprésenté en milieu urbain. Mais attention, cela n’explique pas tout : le degré de densité explique moins de 40% des différences observées, pour l’un comme pour l’autre.

On peut faire le même type d’analyse pour d’autres effets : à côté de la densité, j’ai testé l’effet de l’appartenance régionale (13 régions de France métropolitaine) et celui de l’appartenance à tel ou tel type d’intercommunalité (en distinguant communautés de communes, communautés d’agglomération, communautés urbaines et métropoles). J’ai alors calculé, pour chaque candidat (ainsi que pour le taux d’abstention), ce que ces typologies des communes expliquaient des différences de scores. Les résultats sont repris dans le tableau ci-dessous.

Lecture : le degré de densité explique 17% des différences de taux d’abstention entre communes, l’appartenance régionale en explique 16% et le type d’EPCI 5%. Pour le vote Macron, ces trois effets expliquent respectivement 4%, 22% et 4% des différences de scores entre communes.

Il s’avère que les trois candidats pour lesquels les effets géographiques sont relativement marqués sont Le Pen, Mélenchon et Lassalle (sans surprise un effet rural pour ce dernier). Pour les autres candidats, ces effets géographiques n’expliquent qu’une petite partie des différences observées, avec quelques différences intéressantes entre effets géographiques : aucun effet rural/urbain pour Zemmour, Macron et Hidalgo, mais quelques effets régionaux, notamment pour le premier.

Je me concentre maintenant sur les candidats arrivés aux trois premières places. J’ai estimé un modèle des différences de vote avec comme variables explicatives le degré de densité des communes et leur région d’appartenance. Le tableau ci-dessous présente les résultats obtenus, voici comment il se lit : la commune de référence est une commune très dense d’Auvergne-Rhône-Alpes. Le fait d’être une commune de densité intermédiaire plutôt que d’être une commune très dense réduit le score d’Emmanuel Macron de 0,8 points de pourcentage. Le fait d’être en Bretagne plutôt qu’en Auvergne-Rhône-Alpes l’augmente de 5,3 points de pourcentage.

Ce modèle n’explique que 25% des différences de vote pour Emmanuel Macron, mais 43% pour Jean-Luc Mélenchon et jusqu’à 58% pour Marine Le Pen, candidate pour laquelle la géographie est la plus marquée.

S’agissant des effets de densité, on constate qu’ils jouent fortement dès qu’on sort des communes très denses, pour Le Pen comme pour Mélenchon, avec une variation de plus de 8 points de pourcentage entre communes très denses et communes de densité intermédiaire, à la hausse pour Le Pen, à la baisse pour Mélenchon.

S’agissant des effets régionaux, on observe un effet positif pour Macron en Bretagne et en Pays de la Loire et des effets négatifs principalement en Corse, en PACA et en Occitanie. Pour Le Pen, des effets très positifs en Hauts-de-France, PACA et Grand Est (à noter que le vote Zemmour bénéficie d’effets régionaux positifs en Corse et PACA seulement). Pour Mélenchon, enfin, les effets régionaux sont moins marqués, l’effet positif le plus important se retrouve en Ile-de-France, l’effet négatif le plus important se situe en Corse et en PACA.

Je me suis enfin amusé à analyser l’évolution de la géographie des votes pour les trois mêmes, entre le premier tour 2017 et le premier tour 2022, en me concentrant sur les effets densité et les effets régionaux.

Lecture : la densité des communes “explique” 18% des différences de vote Macron en 2017, et 4% en 2022.

Pour Macron, les effets densité et régionaux jouent encore moins en 2022 qu’en 2017. Pour Le Pen, et surtout pour Mélenchon, ils jouent en revanche sensiblement plus. En 2017, en dépit des propos avancés par certains, on n’avait pas un vote des villes pour Macron et un vote des campagnes pour Le Pen. En 2022, on n’a toujours pas de vote des villes ni des campagnes pour Macron, on a un peu plus un vote des campagnes pour Le Pen, et un peu plus un vote des villes pour Mélenchon.