Cours 2 – Niveau Master (Chap 1- Part 2)

Les Modes de transmission

Si vous n’avez pas lu le précédent article, cliquez ici.

2.2. LTE : Trame et le transport des canaux

Le LTE défini un certain nombre de canaux et signaux physiques pour la voie descendante et la voie montante qu’on rappelle sur les tables 2.1 et 2.6. Les signaux physiques permettant l’estimation du canal sont exploités par le MIMO. Nous allons présenter les canaux/signaux physiques en DL/UL selon les releases.

Table 2.1. Canaux et signaux physiques DL

Table 2.2. Signaux physiques DL définies dans la R.9

Table 2.3 Signaux physiques DL définies dans la R.10

Table 2.4. Canaux physiques DL définies dans la R.11

Table 2.5. Canaux physiques DL définies dans la R.12

Le signal physique Cell-specific RS est utilisé pour une estimation du canal de propagation. Il sert également à la mesure de la puissance RSRP (Reference Signal Received Power) et la qualité RSRQ (Reference Signal Received Quality).

Le signal physique MBSFN RS est transmis uniquement sur le canal physique PMCH pour effectuer l’estimation du canal et la démodulation cohérente du signal reçu.

Le signal physique UE-specific RS est utilisé pour mesurer la puissance du signal reçu et pour aider à la formation des faisceaux (estimation du canal pour le beamforming). UE-specific RS est transmis dans le canal physique PDSCH et améliore l’estimation du canal.

Le signal physique CSI RS améliore la mesure du signal reçu au niveau des interférences par rapport au CRS et étend l’estimation du canal à 8 antennes. Le CRS ne peut estimer le canal que pour 4 antennes.

Table 2.6. Canaux et signaux physiques UL

Le signal physique DM-RS associé au canal physique PUSCH ou PUCCH est utilisé pour l’estimation et à la démodulation cohérente du canal physique respectif PUSCH ou PUCCH

Le signal physique SRS permet à l’entité eNb de mesurer la qualité du signal pour le sens montant.

2.2.2 Structure de la trame

Les données sont émises dans une trame découpées en 10 sous trames dont la durée est de 1 ms (nommée aussi TTI : Transmission Time Interval). Chaque sous trame est composée d’une paire de slots.

Au niveau fréquentielle, la trame s’étend sur toute la bande de l’eNb. Selon les possibilités des opérateurs, la largeur de bande est une des valeurs suivantes : [1.4MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz].

La bande de fréquence est découpée en sous bande de 180 kHz, elle-même découpée en 12 porteuses espacées de 15 kHz. Pour les largeurs de bandes supérieurs ou égales à 3MHz, l’opérateur doit libérer 10% de bande de garde (5%  bande supérieur et 5% de bande inférieure). Ainsi, pour 20 MHz de bande, l’opérateur dispose réellement de 18 MHz de bande ce qui représente 100 sous bandes de 180 kHz.

La méthode de transmission utilisée est l’OFDM : on émet une séquence binaire sur différentes porteuses en parallèle. Chaque porteuse est séparée de 15 kHz, pour assurer l’orthogonalité, la durée symbole OFDM est de 1/15 kHz soit 666.67 µs. ON ajoute à chaque symbole OFDM un préfixe cyclique pour réduire l’interférence entre symbole, on peut ainsi transmettre jusqu’à 14 symboles (14 * 666.67 µs) par sous-trame ou 7 symboles par slot.

On appelle PRB, Physical Ressource Block, un bloc tempo-fréquentielle constitué de 12 porteuses sur une durée d’un slot. Un PRB est donc constitué de 12 porteuses et de 7 symboles OFDM par porteuse soit 84 symboles (0.5 ms et 180 kHz). On appellera RE (Ressource Element) et non symbole l’entité élémentaire car cette ressource est utilisée soit pour transmettre des données soit pour transmettre de la signalisation ou des signaux physiques servant à l’égalisation (apprentissage).

Figure 2.7. Description du PRB

Si on suppose que chaque RE transporte un symbole de DATA alors, selon le mode de modulation (4QAM, 16 QAM, 64 QAM), chaque symbole OFDM transporte respectivement 2, 4,6 ou 8 bits. Un rapide calcul, pour une modulation de 64 QAM sur une bande de 20 MHz conduit à un débit maximum de 84 symboles *6 bits par symbole *100 RB soit 50400 bits sur une durée de 0.5 ms. Le débit théorique maximum est donc de 100,8 Mbit/s.

En réalité un PRB sur deux porte les informations de signalisation (PDCCH) et le reste du PRB et le PRB suivant porte les données (PDSCH).

Figure 2.8. Les canaux logiques et signaux de références sur un slot

Le mapping des canaux est le suivant : l’eNb transmet périodiquement en temps et en fréquence des canaux de références (REF) aidant à l’égalisation du canal de transmission pour les UE en mode de veille (signaux physiques CRS).

Sur une période temporelle d’une demi-trame ou d’une trame, l’eNb transmet respectivement des signaux de synchronisation et d’informations balises sur 64 porteuses au centre de la bande de fréquence du eNb.

Figure 2.9 Les canaux logiques et signaux de références sur une sous-trame

 

Quand le eNb sature t’il?

Les équipementiers qui vendent l’infrastructure 4G limitent les capacités des entités en soumettant leur solution à des licences. D’un autre coté, les licences garantissent aussi le traitement d’un nombre de sessions maximum en temps réel. A titre d’exemple, les eNB ont une capacité (en terme de licence) de 512 bearers, c’est à dire que l’eNb peut ouvrir 512 connexions (bearer) garantissant le maintien de 512 sessions avec les utilisateurs en mode actif.

A ce jour le nombre de bearers que l’eNB met en oeuvre sur certains site de Nantes et aux heures de pointe atteint ce chiffre. On parle alors de saturation de l’eNb, mais nous verrons dans cet article que le déploiement de la VoLTE peut aggraver cette limitation.

Nous allons calculer le nombre d’UE pouvant avoir des accès au cours d’un TTI (Transmission Time Interval correspond à une unité de temps de 1ms pour le LTE, c’est la plus petite unité de temps pendant laquelle un user peut recevoir ou émettre des données). Sous des hypothèses simplificatrices, nous allons calculer le nombre maximum d’utilisateur pouvant, au cours d’un TTI, transmettre ou recevoir des données. Mais, le nombre d’utilisateurs actifs peut être plus élevé puisque un user peut nécessiter des ressources à un TTI mais pas au(x) TTI(s) suivant(s).

Combien d’utilisateurs maximum sont actifs par TTI sur l’eNB ?

Nous allons nous intéresser dans cet article au nombre maximum d’UE pour lesquelles l’eNb alloue des données sur un TTI. Nous aborderons dans un premier la méthode de répartition des canaux de contrôles sur la bande LTE afin de calculer le nombre d’allocation possible.

1 – Structure de la trame.

1-a) PDCCH

Les données transmises entre l’eNb et l’UE sont séquencées de manière dynamique. L’UE est informé de l’allocation de PRB en réception et de l’attribution de PRB en émission via les informations portées par le canal PDCCH. Outre l’allocation de ressource, le PDCCH informe l’UE du type de modulation et du codage utilisés (MSC) et en cas de réception multiples (MIMO), le PDCCH transporte le type de précodage (PMI).

Ainsi, le PDCCH transporte des informations de contrôle :

  • sur la voie descendante permettant d’informer l’UE de l’existence de données à recevoir dans la trame courante et des caractéristiques de modulation
  • des informations sur les ressources que l’UE utilisera sur la voie montante pour la sous-trame émise par l’UE 4 TTI plus tard.

Il est à noter que plusieurs PDCCH peuvent être transmis dans une sous-trame, soit pour transmettre des données respectivement à plusieurs UE, soit pour un seul UE. En effet, plusieurs PDCCH peuvent être transmis à un seul UE dans le cas ou le nombre d’information est conséquent, comme par exemple pour informer l’UE de l’allocation dynamique et du schéma de codage sur la voie descendante et montante, ainsi que la commande de contrôle de puissance.

Afin de spécifier le type d’information transporté par le PDCCH, l’UE décode l’information portée par le DCI (Downlink Control Information) qui stipule le type d’information transmise par le PDCCH parmi  10 formats possibles. Les 10 formats sont récapitulés dans le tableau ci-dessous :

DCI

Les formats DCI 0, DCI 3 et DCI 3A portent des informations destinées à l’UE pour la transmission sur la voie montante. En effet le format DCI 0 alloue des PRB pour l’émission du mobile vers l’eNB, et les formats DCI3/DCI 3A portent de contrôle de puissance pour la voie montante.

Le PDCCH est transmis sur un CCE (control channel elements) ou sur plusieurs CCE (on parle d’aggrégation de CCE dont les valeurs sont 2, 4 ou 8 CCE). Un CCE est composé de 9 REG – Ressource Element Group, un REG étant constitué de 4 RE. Le PDCCH est modulé en QPSK.

PDCCH_format

1-b) PCFICH

De plus, le PDCCH est obligatoirement transmis sur les premiers symboles OFDM de chaque sous-trame (De 1 à 3 symboles voir 4 symboles au maximum si le nombre de RB est faible, ce qui correspond au cas où la bande est de 1.4 MHZ). Pour savoir sur combien de symboles est transmis le PDCCH, l’eNb transmet une information complémentaire nommée CFI (Control Format Indicator) dans le canal de control PCFICH. Le PCFICH est transmis quant à lui sur le premier symbole OFDM de chaque sous trame, réparti sur toute la bande pour profiter de la diversité en fréquence. Les 4 valeurs possibles de CFI sont encodées dans un mot de 32 bits avec une forte redondance pour assurer la détection/correction au niveau de l’UE.

PCFICH_Mot

De surcroît, le canal PCFICH est modulé en QPSK pour assurer une meilleure immunité au bruit. Le CFI étant codé sur 32 bits, 16 RE sont donc nécessaires, soit 4 REG. La position des REGs est définie en fonction de l’identité de la cellule (Cell Id), laquelle est une valeur comprise entre 1 et 504.

PCFICH_REG

1-c) PHICH

Outre le PCFICH, l’eNb transmet des informations d’acquittement (ACK/NACK) sur les trames émises par l’UE. Il s’agit du canal PHICH (HARQ), dans lequel 1 bit d’information (ACK/NACK) est répété 3 fois et étalé par un code de Walsh Hadamard (code orthogonal) et modulé en BPSK.

Ainsi, un ACK a pour valeur 111 et un NACK a pour valeur 000. Le PHICH est modulé en BPSK (signal complexe situé sur le cercle trigonométrique à +pi/4 ou 5*pi/4), il faut donc 3 symboles. Le signal modulé est ensuite étalé par un code d’étalement de facteur SF=4, permettant d’obtenir 32 combinaisons complexes et d’extraire 8 codes orthogonaux (4 codes et l’équivalent déphasé de pi/2). Grace aux 8 codes orthogonaux, il est possible de transmettre 8 PHICH simultanément.

Il est donc nécessaire de réserver 12 RE pour transmettre jusqu’à au plus 8 PHICH. On parle de groupe de PHICH, codé par des codes orthogonaux.

PHICH_Code_Orthogonaux

2 – Calcul du nombre de PDCCH.

Nous allons maintenant calculer le nombre de ressources PDCCH, permettant ainsi d’obtenir le nombre d’utilisateurs simultanés sur la bande totale de l’eNB.

Il s’agit donc de calculer le nombre de ressource disponible (RE) sur les premiers symboles (1 à 3) pouvant porter le canal PDCCH. L’objectif est donc de calculer le nombre de RE disponible sur tout la bande et retrancher les canaux PFCICH, PHICH et les signaux de références (RS).

Les signaux de références (RS) sont transmis par l’eNB à chaque RB et tous les 6 RE du premier symbole si l’eNb n’a qu’une seule antenne. Si l’eNb possède au moins deux antennes, les RS sont également transmis sur 6 RE du premier symbole pour la 2ème antenne. Le RS est nécessaire afin de mesurer la distorsion apportée par le canal de propagation et de ce fait, dans le cas ou l’eNb possède deux antennes, l’eNb ne transmet aucun signal sur le RE correspondant à la position du RS de l’autre antenne.

RS_antennes

On va donc considérer qu’il y a 2 ou 4 RS par PRB.

Nous pouvons maintenant calculer le nombre de ressources PDCCH.

Rappelons que selon la bande allouée au LTE qui s’étend de 1.4 MHz  minimum à 20 MHz, le nombre de PRB noté N_PRB est le suivant :

1,4 MHz =>  6 PRBs

3  MHz   =>  15 PRBs

5  MHz   =>  25 PRBs

10  MHz  => 50 PRBs

15  MHz  => 75 PRBs

20  MHz  => 100 PRBs

Chaque PRB est composé de 12 sous porteuses, le PDCCH est transporté sur N_pcfich symboles (canal PCFICH). Le nombre total de RE sur N_pcfich symbole est donc de :

12*N_PRB*N_pcfic

Nous allons maintenant calculer le nombre de RE à soustraire :

  • Info_PCFICH=16
  • Info HARQ. On sait qu’il est possible de transmettre un groupe de 8 ACK/NACK dans un seul PCICH. Par conséquent, sur N_PRB, le nombre de groupe de PCFICH sera de E[N_PRB/8], avec E la partie entière supérieure. Enfin, le groupe de PCICH nécessite 12 RE, donc le nombre de RE sera de 12* E[N_PRB/8].
  • RS pour une antenne : 2*N_PRB
  • RS pour deux antennes ou plus : 4*N_PRB

2 – Application et cas de la VoLTE.

2-a) Calcul sur 5 MHz, 10 MHz et 20 MHz

Nous allons faire une application pratique sur 10 MHz, puis à partir des tableaux, je fournirai les résultats sur 5 MHz et 20 MHz

10 MHz =>50  PRB soit 50 *12 RE =600 dans le premier symbole. Si le nombre de symbole utilisé par le PDCCH monte à 3, alors il y a aura 1800 RE pouvant transporter les PDCCH

On retire :

  • 16 RE pour le PCFICH
  • 12* E[50/8] = 12*7=84 RE pour le PCICH
  • 100 RE pour les RS si une antenne et 200 RE pour deux antennes

Soit un total de 200 RE ou 300 RE pour deux antennes.

Pour rappel,  le PDCCH nécessite au moins un CCE (mais peut nécessiter 2 CCE, 4CCE ou 8CCE). Un CCE est composé de 36 RE et le PDCCH est positionné sur N_pcfich symboles (canal PCFICH). Pour finir, étudions les 3 cas possibles

  1. N_pcfich=1 => 600 RE, moins 100 RE pour une antenne et 200 pour 2 antennes. Il reste donc 400 ou 300 RE. Dans le cas ou il y a 2 antennes, 300/36=8.33 soit 8 PDCCH donc 8 utilisateurs simultanés
  2. N_pcfich=2 => 1200 RE, moins 100 RE pour une antenne et 200 pour 2 antennes. Il reste donc 1000 ou 900 RE. Dans le cas ou il y a 2 antennes, 900/36=25 soit 25 utilisateurs simultanés
  3. N_pcfich=3 => 1800 RE, moins 100 RE pour une antenne et 200 pour 2 antennes. Il reste donc 1600 ou 1500 RE. Dans le cas ou il y a 2 antennes, 1500/36=41.66 soit 41 utilisateurs simultanés

Voilà une synthèse pour 3 bandes LTE différentes et deux antennes :

Nbre_PDCCH_5MHZ

Nbre_PDCCH_10MHZ

Nbre_PDCCH_20MHZ

NB : L’UE détecte le PDCCH en fonction de son identifiant RNTI – Radio Network Temporary Identifier :

  • P-RNTI si le mobile est en veille. Il écoute le canal PDCCH pour être informé d’un Paging
  • C-RNTI en mode connecté ou SPS-C-RNTI quand il reçoit des informations périodiquement (par exemple de la VoIP reçue toutes les 20 ms)

Le RNTI est codé sur 16 bits et réalise un ET logique avec le code CRC du canal PDCCH.

2-b) Impact de la VoLTE

Les eNb sont limités à 512 bearers actifs, quel sera l’impact de la VoLTE?

Nous supposons une bande de 10 MHz, si le PDCCH est codé sur 3 symboles (hypothèse de 2 antennes), le nombre maximum d’utilisateur sur une bande de 10 MHz est donc de 41 utilisateurs par TTI.

Or, la VoLTE nécessite la transmission d’information que tous les 20 TTI, donc en supposant que des utilisateurs en VoLTE, le nombre de sessions actives est de :

41 * 20 = 820 utilisateurs.

Par contre dans le cas ou la bande n’est que de 5 MHz, le nombre d’utilisateurs actifs sera limité à 400, en dessous du seuil des 512 licences.