SDT – Small Data Transmission (3ème)

Procédure d’accès aléatoire EDT/RA-SDT

La spécification R.15 propose une évolution de la procédure d’accès aléatoire nommée EDT Early Data Transmission. En cours de procédure d’accès aléatoire, le mobile UE peut transmettre des données dans le message 3 dont la taille est comprise entre 328 et 1000 bits et le message 4 est utilisé pour la transmission descendante [4]. La taille TBS (Transport Block Size) est toutefois imposée par l’accès radioélectrique RAN dans un message 2 RAR.

La procédure MO-EDT (Mobile Originating EDT) permet au mobile UE de transmettre des données lorsque la couche haute demande l’établissement d’une connexion RRC ou l’activation de la connexion RRC (resume) pour la transmission de données (MO Data). La cause de l’établissement n’est ni un SMS, ni de la signalisation mais la transmission de données. La procédure MO-EDT est réservée aux terminaux NB-IoT.

Pour activer l’EDT, le mobile UE informe la station de base qu’il désire transmettre au cours du message 3 en utilisant une séquence PRACH particulière (NPRACH pour le NB-IoT) dans le message 1.

Dans le message 3, le mobile UE transmet la requête RRCEarlyData Request avec le message NAS encapsulé (S-TMSI, establishmentCause, dedicatedInfoNAS).

Le message EDT est transmis en clair sur l’interface radio si le mobile était à l’état RRC_IDLE ou chiffré en utilisant le contexte de sécurité AS si le mobile était à l’état RRC_INACTIVE. Le message NAS est quant à lui chiffré selon les clés de sécurités NAS connues au niveau du mobile UE et du cœur de réseau (MME/AMF).

Figure 8 : Protocole de transmission EDT

Procédure de transmission pré-configurée PUR (Preconfigured Uplink resource)

La spécification 3GPP R.16 PUR [5,6] propose de réduire davantage la signalisation par rapport à la procédure EDT en supprimant les messages 1 et 2 de la procédure d’accès aléatoire.

Le mobile dispose ainsi d’une pré-configuration lorsqu’il est à l’état CONNECTE lui permettant de connaître :

  • Les spécifications de ressources (UL-Grant) ;
  • Le schéma de modulation et de codage MCS ;
  • Le nombre de répétition PUSCH ;
  • L’identifiant radio RNTI à utiliser : PUR C-RNTI

La configuration du mobile par un message RRC est déclenché soit par le mobile avec une requête PUR Configuration Request ou par l’eNB ou le réseau à travers un message RRC.

Dans le cas d’étude qui nous intéresse, le mobile étant statique la valeur du Timing Advanced (TA) ne change pas, dans le cas ou le mobile conserve la même cellule de service (Serving Cell). Comme évoqué dans l’introduction, le changement de cellule peut intervenir en cas de défaillance de la station de base lorsque le mobile est en écoute.

L’allocation de ressource de type 5, uniquement applicable pour les terminaux BL/CE est configurée à partir du paramètre PUR-Config [6].

La première transmission PUSCH PUR est séquencée par un message RRC, les messages subséquents sont ordonnancés par un message DCI.

Une étude plus importante doit être menée pour connaitre les conditions de validité de cette procédure.

 Etat INACTIVE CONNECTED

L’état RRC INACTIVE a été introduit de manière à conserver au niveau de la station de base et du mobile UE le contexte AS (Access Stratum), dans le but de réduire la consommation énergétique et le nombre de messages échangés entre le mobile UE et la station de base.

La spécification R.13 introduit deux nouveaux messages : RRC SUSPEND et RRC RESUME pour modifier l’état du mobile UE au niveau du mobile et de la station de base.

Dans l’état RRC INACTIVE, le mobile et la station de base suspendent leur connexion radioélectrique mais le contexte AS est conservé au niveau du mobile et de la station de base. Le cœur de réseau considère que le mobile est toujours à l’état RRC CONNECTED. La sélection de cellule est gérée par le mobile mais le paging est géré par la station de base.

Figure 11 : Les états du mobile UE 4G/5G

Figure 10 : Grafcet des états du mobile

Lorsque le mobile UE est à l’état RRC INACTIVE, il dispose d’un identifiant I-RNTI permettant d’identifier le contexte AS et permettant à la station de base de s’adresser au mobile UE via les messages de signalisation RRC, mais l’identifiant I-RNTI n’est pas utilisé pour embrouiller les bits du CRC.

Il y a deux formats I-RNTI :

  • Un format court de 24 bits
  • Un format long de 40 bits

Le mobile UE utilise l’un des deux formats en fonction de l’information portée par le drapeau « useFullResumeId » porté par le message SIB1.

Figure 11 : Les informations concernant l’identifiant I-RNTI portées par le SIB1

L’identifiant I-RNTI est utilisé pour notifier le mobile UE d’une procédure de paging ou pour mettre à jour la localisation (RNA Update). L’identifiant I-RNTI n’est pas utilisé lors de la procédure PRACH.

Procédure

Figure 12 : La procédure d’activation de lien RRC (Passage de l’état RRC INACTIVE à l’état RRC Connected)

RRCRESUMEREQUEST ou RRCRESUMEREQUEST1

Quand le mobile UE souhaite transmettre un message, il déclenche la procédure d’accès aléatoire puis demande le rétablissement de la connexion radioélectrique via le message RRCResumeRequest ou le message RRCResumeRequest1. Le mobile émet la requête RRCResumeRequest1 si le SIB1 contient l’information useFullResumeID pour transmettre l’identifiant I-RNTI sur 40 bits. Sinon, le mobile émet la requête RRCResumeRequest avec l’identifiant SHORT-IRNTI.

UE CONTEXT RESUME REQUEST

La procédure UE CONTEXT RESUME REQUEST permet à l’eNB d’indiquer au cœur de réseau (MME/AMF) que le mobile UE souhaite reprendre la connexion RRC suspendue ou pour permettre l’émission d’un message EDT.

5G-NR : RA-SDT et CG-SDT

La procédure RA-SDT est similaire à la procédure EDT lorsque le mobile est soit à l’état de veille, soit à l’état inactif en proposant de transmettre le signal en 4 étapes ou en 2 étapes.

La procédure CG-SDT est similaire à la procédure PUR lorsque le mobile est à l’état inactive.

L’une et l’autre sont en cours de spécification dans la R.17 [7] et il y a un manque d’informations actuellement sur la procédure. De plus, la mise en œuvre de la R.17 radio ne sera pas réalisée avant 2024/2025.

La configuration du SDT s’appuie sur la sélection de cellule à partir de la mesure du niveau de puissance RSRP. Or en cas de brouillage, le niveau de puissance augmente. Ainsi, même si la valeur de TA est correcte, le risque de re-sélection de cellule de part la puissance RSRP va générer la modification du TA ou l’expiration du timer TA.

Conclusion

Pour passer du mode de veille au mode connecté, le terminal UE émet une séquence aléatoire dont les caractéristiques (racine de la séquence) et l’instant d’émission est transmise par la station de base au mobile UE.

Concernant l’émission de la séquence aléatoire, la sous-trame de transmission est définie par le message SIB2.

La procédure d’accès aléatoire à 4 messages est impossible car il est nécessaire de connaitre l’identifiant T-RNTI.

La procédure de transmission de message SDT à 2 messages (PUR ou RA-SDT/CG-SDT) permet de transmettre des données sur deux messages à partir de la connaissance de l’identifiant radio RNTI (messages 1 et 2 ne sont plus transmis)

 

Ressources Bibliographiques

[1] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.1-2: Frame structure type 1 random access configuration for preamble formats 0-3

[2] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3

[3] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-2 NCS for preamble generation (preamble formats 0-3)

[4] Andreas Höglund, Dung Pham Van, Tuomas Tirronen, Olof Liberg, Yutao Sui, and Emre A. Yavuz, “3GPP Release 15 Early Data Transmission”, 2018, IEEE Communications Standards Magazine ( Volume: 2, Issue: 2, JUNE 2018), p90-96, https://doi.org/10.1109/MCOMSTD.2018.1800002

[5] Andreas Höglund, G. A. Medina-Acosta, Sandeep Narayanan Kadan Veedu, Olof Liberg, Tuomas Tirronen, Emre A. Yavuz, and Johan Bergman , 3GPP Release-16 Preconfigured Uplink Resources for LTE-M and NB-IoT

[6] 3GPP TS 36.213, R.16.8.0 : Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

[7] 3GPP TS 38.321, R.17.0.0 (mars 2022), MAC protocol Specification.

SDT – Small Data Transmission (2ème)

Procédure d’accès aléatoire

La procédure d’accès aléatoire a pour objectif d’informer la station de base que le mobile souhaite être contrôlée par la station de base. Le mobile UE établit une procédure d’accès aléatoire dans les cas suivants :

  • Lorsque le mobile UE s’allume (ou en sortant du mode avion) ;
  • Lorsque le mobile UE met à jour sa localisation ;
  • Lorsque le mobile UE souhaite l’établissement d’une session PDU ou d’une connectivité PDN ;
  • En cas de H.O (procédure d’accès aléatoire sans contention).

Nous allons limiter notre étude au cas où le mobile souhaite l’établissement d’une connectivité PDN.

Figure 4 : La procédure d’accès aléatoire

Le message 1 émit par le mobile est transmis avec une puissance initiale P1 estimée à partir du signal de synchronisation reçu (mesure RSRP). En cas de non réponse, le mobile incrémente sa puissance d’émission. Le mobile transmet le préambule et l’identifiant de 16 bits RA-RNTI, lequel est calculé de la manière suivante :

Dans le cas du NB-IoT, les sous-porteuses sont espacées de 3,75 kHz ce qui permet d’avoir 48 sous-porteuses dans une RB de 180 kHz. Afin de réduire les risques de collision, le préambule est transmis sur 4 sous porteuses choisies pseudo-aléatoirement parmi 12 sous-porteuses consécutives via un motif de Frequency Hopping.

La station de base scrute dans les sous-trames correspondantes (cf. Table 3) la réception de préambules. En cas de détection d’un préambule, la station de base émet un message RAR Random Access Response dans le canal physique PDSCH en indiquant la présence du message RAR par une information de contrôle DCI_1 émise dans le canal PDCCH. L’information DCI_1 portée par le canal PDCCH est embrouillée par l’identifiant RA-RNTI. Le mobile UE attend la réponse de la station de base dans une fenêtre temporelle. La durée de la fenêtre temporelle n’est pas définie dans la norme mais est diffusée dans le message SIB via le paramètre rar-WindowLength IE.

Le RAR contient :

  • La valeur du préambule (RAPID : Random Access Preamble Id)
  • Le paramètre de Timing Advanced.
  • Les informations d’ordonnancement permettant d’indiquer au mobile UE les ressources radioélectriques que ce dernier devra utiliser pour l’émission du message subséquent ainsi que le schéma de modulation MCS.
  • L’allocation de ressource (UL Grant) pour la réponse du mobile vers la station de base
  • L’identifiant radioélectrique temporaire T-RNTI

Le mobile UE conserve la valeur T-RNTI et transmet son message 3 RRC Connection Request au niveau des ressources tempo-fréquentielles indiquées par la station de base dans le message 2 (UL Grant/RB Assignment). Le message est court (80 octets) et contient l’identité du mobile (TMSI ou une valeur aléatoire). L’identité radioélectrique T-RNTI transmis dans le message précédent est utilisé pour embrouiller le CRC du signal PUSCH montant.

Le message 4 (RRC Connection Setup) est utilisé pour lever la contention. En effet, si 2 mobiles UE ont transmis dans l’étape 3 son identifiant TMSI ou une valeur aléatoire (en estimant de droit que le message 2 lui était destiné), la station de base transmet l’allocation de ressource pour les échanges suivants à un mobile défini par son identifiant, c’est-à-dire la valeur TMSI ou la valeur aléatoire transmis dans le message 3. Le T-RNTI échangé dans le message 3 devient le C-RNTI à moins que l’UE disposait déjà d’un C-RNTI.

Le dernier message RRC Connection Setup Complete permet au mobile de valider le passage en mode connecté. Le message contient l’identité du PLMN sélectionné et un message NAS à destination du cœur de réseau.

La figure 7 présente le diagramme de machine d’état au niveau du mobile UE (figure 7a) et de la station de base (figure 7b).

Figure 5 : Le diagramme de machine d’état mobile UE (a) et station de base (b)

Les messages transmis portent les informations suivantes :

Figure 8 : L’échange de messages pour la procédure RAR

Figure 9 : Message 2 de la procédure d’accès aléatoire

La suite est récupérée sur Sharetechnote :

 

  • MAC Subheaders
    • E: The Extension field is a flag indicating if the MAC subPDU including this MAC subheader is the last MACsubPDU or not in the MAC PDU.
      • E field is set to “1” to indicate at least another MAC subPDU follows
      • E field is set to “0” to indicate that the MAC subPDU including this MAC subheader is the last MAC subPDU in the MAC PDU
    • T: The Type field is a flag indicating whether the MAC subheader contains a Random Access Preamble ID or a Backoff Indicator.
      • The T field is set to “0” to indicate the presence of a Backoff Indicator field in the subheader (BI)
      • The T field is set to “1” to indicate the presence of a Random Access Preamble ID field in the subheader (RAPID)
    • R: Reserved bit, set to “0”
    • BI: The Backoff Indicator field identifies the overload condition in the cell and its size is 4 bits to represent 16 possible index. Index value and corresponding Backoff time value is shown in below table

    • RAPID: The Random Access Preamble IDentifier field identifies the transmitted Random Access Preamble. The size of the RAPID field is 6 bits. If the RAPID in the MAC subheader of a MAC subPDU
      corresponds to one of the Random Access Preambles configured for SI request, MAC RAR is not included in the MAC subPDU.
  • MAC RAR Payload
    • R: Reserved bit, set to “0”;
    • Timing Advance Command: The Timing Advance Command field indicates the index value TA used to control the amount of timing adjustment that the MAC entity has to apply in TS 38.213 [6]. The size of the Timing Advance Command field is 12 bits
    • UL Grant: The Uplink Grant field indicates the resources to be used on the uplink i.e. Msg3. The size of the UL Grant field is 27 bits and content of UL grant is shown in below.

      • Frequency Hopping Flag
        • If the value of the frequency hopping flag is 0, the UE transmits the PUSCH without frequency hopping; otherwise, the UE transmits the PUSCH with frequency hopping.
      • MCS: The UE determines the MCS of the PUSCH transmission from the first sixteen indexes of the applicable MCS index table for PUSCH as described in 3GPP specification 38.214
      • TPC:The TPC command value is used for setting the power of the PUSCH transmission, and  is interpreted according to below table.
          • CSI request: This field a is reserved.
        •  Temporary C-RNTI: The Temporary C-RNTI field indicates the temporary identity that is used by the MAC entity during Random Access. The size of the Temporary C-RNTI field is 16 bits.

 

Ressources Bibliographiques

 

[1] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.1-2: Frame structure type 1 random access configuration for preamble formats 0-3

[2] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3

[3] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-2 NCS for preamble generation (preamble formats 0-3)

[4] Andreas Höglund, Dung Pham Van, Tuomas Tirronen, Olof Liberg, Yutao Sui, and Emre A. Yavuz, “3GPP Release 15 Early Data Transmission”, 2018, IEEE Communications Standards Magazine ( Volume: 2, Issue: 2, JUNE 2018), p90-96, https://doi.org/10.1109/MCOMSTD.2018.1800002

[5] Andreas Höglund, G. A. Medina-Acosta, Sandeep Narayanan Kadan Veedu, Olof Liberg, Tuomas Tirronen, Emre A. Yavuz, and Johan Bergman , 3GPP Release-16 Preconfigured Uplink Resources for LTE-M and NB-IoT

[6] 3GPP TS 36.213, R.16.8.0 : Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

[7] 3GPP TS 38.321, R.17.0.0 (mars 2022), MAC protocol Specification.

SDT – Small Data Transmission

Introduction

L’Internet des Objets a poussé la 3GPP a imaginé des protocoles dédiés pour des transmissions à faible volumétrie de données SDT (Small Data Transmission).

Le réseau 4G propose deux solutions SDT nommées EDT (Early Data Transmission) et la PUR (Preconfigured Uplink Resource).

Le réseau 5G propose deux autres solutions SDT nommées RA-SDT et CG-SDT. La technologie RA-SDT est proche de la solution EDT et la technologie CG-SDT est proche de la solution PUR.

Cet article est la continuité de la présentation de l’IoT Cellulaire (https://blogs.univ-poitiers.fr/f-launay/2017/05/28/mtc-le-reseau-m2m-iot-sur-la-4g-1ere-partie/) et je vais reprendre l’article sur le canal PRACH  : https://blogs.univ-poitiers.fr/f-launay/2020/05/02/etablissement-de-la-connexion-radioelectrique-comparaison-4g-et-5g/

Etude du signal d’accès aléatoire

Le signal d’accès aléatoire sur l’interface radioélectrique LTE est généré par le mobile selon la formule suivante :

La séquence Xu,v est une séquence de Zadoff-Chu (ZC). La séquence de PRACH s’appuie sur une séquence de ZC dans le domaine fréquentiel et la formule précédente permet d’appliquer la transformation du signal vers le domaine temporel.

La liste des préambules est transmises à l’UE via le message d’information système SIB2. La station de base propose une liste voire deux listes par cellule, chaque liste contient 64 préambules.

Un préambule racine est une séquence pseudo-aléatoire de Zadoff-Chu (ZC) qui est définie par la valeur de la racine. Les préambules de la liste sont obtenus à partir d’un décalage cyclique Cv du préambule racine.

Un nombre fixe de 64 préambules est alloué pour chaque cellule et en fonction de la longueur de décalage cyclique NCS, une ou plusieurs séquences racine d’accès aléatoire sont nécessaires par cellule pour générer les 64 préambules.

PREAMBULE PRACH (Accès Aléatoire)

Le préambule PRACH est constitué d’un préfixe cyclique de longueur TCP et d’une séquence de longeur TSEQ.

Figure 1 : Le préambule PRACH

Les longueurs TCP et TSEQ  dépendent de la structure de la trame (type 1 : FDD ou type 2 : TDD) et de la configuration définie au niveau de la couche RRC de l’accès aléatoire selon l’un des quatre formats ci-dessous :

Table 1 : La configuration de la séquence PRACH

Il convient de noter que durée de la séquence d’apprentissage définit la couverture de la cellule pour estimer correctement l’avance de synchronisation. Si eNodeB reçoit des préambules au-delà de la plage de cellules définie, l’estimation de l’avance temporelle sera erronée et l’accès aléatoire, la procédure échouera, ce qui entraînera de nouvelles tentatives de la part de l’UE.

Table 2 : La couverture de la cellule

 Les préambules par cellule sont divisés en deux sous-ensembles

La transmission du préambule PRACH est déclenché soit par la couche MAC (demande d’accès avec contention), soit par la couche RRC de la station de base (demande d’accès sans contention). L’étude porte sur la demande d’accès avec contention.

Lorsque le préambule est déclenché par la couche MAC, il est contraint à des ressources tempo/fréquentielle correspondant au numéro de la sous-trame dans une trame et au numéro du bloc de ressource. Les ressources tempo-fréquentielles autorisées sont transmis au mobile par le message SIB2 (cf. annexe):

  • L’instant de transmission est défini via l’index PRACH-Configuration. Le numéro d’index de configuration PRACH, sur 6 bits (valeurs 0 à 63), permet de savoir dans quelle(s) sous-trames le PRACH peut être transmis sur chaque sous trame ou uniquement sur les sous trames paires
  • Le décalage prach-FrequencyOffset détermine la position du bloc de ressource (PRB) contenant la séquence dans le domaine fréquentiel

Table 3 : Table de configuration de l’index de configuration PRACH  [1]

PREAMBULE NPRACH (Accès Aléatoire)

A l’instar du LTE, les informations sur la procédure d’accès aléatoires sont transmises via le SIB2. On trouve la périodicité des demandes d’accès aléatoires, l’instant de transmission, la première sous-porteuse et le nombre de sous-porteuses allouées à la demande NPRACH, le nombre de répétition de la transmission du préambule.

La figure suivante est extraite du site : https://www.sharetechnote.com/html/Handbook_LTE_NB_rach.html


Figure 2 : Les sous porteuses NPRACH (informations SIB2)

Le signal NPRACH est donc transmis dans les ressources tempo-fréquentielles spécifiées dans le message SIB2.

Figure 3 : La transmission du NPRACH (exemple)

Dans le cas du NB-IoT, il n’y a que deux formats de préambules. Les préambules sont toujours composées d’un préfixe cyclique CP et d’une séquence.

Figure 4 : Comparaison des préambules entre le l’interface LTE et l’interface NB-IoT [1]

 La séquence du préambule PRACH/NPRACH

La séquence du préambule PRACH/NPRACH est issue du générateur de Zadoff-Chu :

Avec u, la racine de Zadoff-Chu,  la longueur de la séquence (en général 839)

La station de base transmet au mobile un index de racine. La correspondance entre l’index et la racine de Zadoff-Chu est indiquée dans la table 4.

Les séquences cycliques sont calculées à partir de

Table 4 : La correspondance entre l’indice de la séquence RACH et la racine de Zadoff-Chu [2]

La valeur de Cv est calculée par l’équation suivante :

La valeur de NCS est définie par la table 4 à partir de la valeur ZeroCorrelationZoneConfig transmise dans le message SIB2

Figure 5 : Le message SIB2

Table 5 : Les valeurs de NCS [3]

Il y a une ou au plus deux listes de 64 séquences par cellule. Les 64 séquences d’une liste sont extraites à partir de tous les décalages cycliques possible de la séquence racine (root). La valeur racine est transmise par la station de base via le SIB2 dans le message RACH_ROOT_SEQUENCE (pour la 1ère liste de 64 séquence) et dans le message ROOT_SEQUENCE_INDEX_HI si une deuxième liste est gérée.

 

Ressources Bibliographiques

 

[1] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.1-2: Frame structure type 1 random access configuration for preamble formats 0-3

[2] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3

[3] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-2 NCS for preamble generation (preamble formats 0-3)

[4] Andreas Höglund, Dung Pham Van, Tuomas Tirronen, Olof Liberg, Yutao Sui, and Emre A. Yavuz, “3GPP Release 15 Early Data Transmission”, 2018, IEEE Communications Standards Magazine ( Volume: 2, Issue: 2, JUNE 2018), p90-96, https://doi.org/10.1109/MCOMSTD.2018.1800002

[5] Andreas Höglund, G. A. Medina-Acosta, Sandeep Narayanan Kadan Veedu, Olof Liberg, Tuomas Tirronen, Emre A. Yavuz, and Johan Bergman , 3GPP Release-16 Preconfigured Uplink Resources for LTE-M and NB-IoT

[6] 3GPP TS 36.213, R.16.8.0 : Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

[7] 3GPP TS 38.321, R.17.0.0 (mars 2022), MAC protocol Specification.