Part 4 : Interface Radioélectrique 5G – Trames, numérologies et allocation de ressources

Extrait du livre : NG-RAN et 5G-NR : L’accès radio 5G et l’interface radioélectrique – sortie prévue juillet 2021

Suite de l’article précédent

4) L’allocation de ressource SLIV : Le canal PDSCH

L’information de contrôle DCI format 1_0 et 1_1 porte 4 bits d’allocation dans le domaine temporel (‘time domain resource assignment’).

A partir des 4 bits, le mobile est configuré par les valeurs suivantes :

  • un décalage en slot K entre l’information DCI et la position du slot contenant le canal de trafic descendant PDSCH ;
  • l’association du signal de référence DMRS avec le canal PDSCH (‘PDSCH mapping type’). Il existe deux types d’allocation nommée TypeA et Type B ;
  • la valeur SLIV indiquant le nombre de symboles S séparant le début du slot contenant le canal PDSCH et le premier symbole du canal PDCH et indiquant la longueur L du canal PDSCH.

 

La valeur SLIV (Start Length Indicator Value) comprise entre 0 et 127 permet de récupérer le symbole de début du canal PDSCH et L est la longueur du canal PDSCH.

SLIV est calculé par la formule suivante :

  • Si la longueur L est inférieure ou égale à 8 alors SLIV=14*(L-1)+S
  • Sinon SLIV=14*(14-L+1)+(14-1-S)

A partir de la valeur SLIV, le terminal en déduit la valeur de S et de L.

Les valeurs de L et de S sont comprises entre 1 et 14 selon la table suivante :

Pour la Release 15 :

Pour la Release 16, des valeurs supplémentaires sont possibles pour la correspondance de Type B.

Cette évolution permet de mieux exploiter le spectre pour la technique DSS que nous verrons dans un prochain article.

Pour résumer, l’allocation de ressource permet de définir la valeur de la variable k0 qui indique le décalage en slots entre la réception du canal de contrôle DCI et la valeur SLIV permet de définir sur quel symbole démarre le canal PDSCH au niveau du slot (valeur S) ainsi que la longueur du canal L.

Le signal de référence est transmis sur le symbole 2 ou 3 pour le type A ou en début du canal PDSCH pour le type B.

La valeur SLIV détermine de manière unique les valeurs L et S comme le montre le tableau suivant :

Pour des raisons de présentations, sur le premier tableau les valeurs de L sont en colonne alors que pour le deuxième tableau, les valeurs de L possibles sont en ligne.

Pour la R.16, la condition L+S est inférieure ou égale à 14 supprime toute ambiguïté :

A titre d’exemple, L=12 et S=2 donne la valeur 53, laquelle est obtenue pour S=11 et L=4. Mais ce couple (11,4) ne respecte pas la condition S+L inférieur ou égal à 14.

 

Références

[0] Extrait du livre : NG-RAN et 5G-NR : L’accès radio 5G et l’interface radioélectrique

[1] http://howltestuffworks.blogspot.com/2019/12/5g-nr-pdsch-resource-allocation-in-time.html

[2] https://www.linkedin.com/pulse/5g-nr-k0k1-k2-time-domain-dl-ul-resource-allocation-naveen-chelikani/

[3] TS 38.213

Part 2 : Interface Radioélectrique 5G – Trames, numérologies et allocation de ressources

Extrait du livre : NG-RAN et 5G-NR : L’accès radio 5G et l’interface radioélectrique – sortie prévue juillet 2021

Suite de l’article précédent

2) Les informations de contrôles DCI et les paramètres k0,k1 et k2

Nous allons nous intéresser dans cet article uniquement à l’allocation de ressource lorsque le mobile est à l’état connecté.

Dans cet état, la station de base alloue les ressources radioélectriques pour le lien descendant et le lien montant via les informations de contrôles DCI format 1_0 et DCI format 1_1 (Downlink Control Information).

Le message DCI pour le format 1_0 et 1_1 porte 4 bits d’allocation permettant d’informer le mobile de la réception de données dans le domaine temporel (‘time domain resource assignment’).

Les 4 bits font référence à une ligne d’un tableau de 16 valeurs. Chaque ligne donne 3 informations :

  • un décalage en slot K entre l’information DCI et la position du slot contenant le canal de trafic descendant PDSCH ;
  • la valeur SLIV indiquant le nombre de symboles S séparant le début du slot contenant le canal PDSCH et le premier symbole du canal PDCH et indiquant la longueur L du canal PDSCH ;
  • l’association du signal de référence DMRS avec le canal PDSCH (‘PDSCH mapping type’). Il existe deux types d’allocation nommée TypeA et Type B.

Figure 4 : L’allocation de ressource par rapport au signal de contrôle DCI [1]

Le paramètre K1 permet d’indiquer le décalage en nombre de slots entre le slot du canal PDSCH et le slot d’acquittement sur le lien montant.

 

Figure 5 : L’allocation des ressources pour l’acquittement de la part du mobile du message reçu en provenance de la station de base [2]

La valeur K1 est transmise dans le champ PDSCH-to-HARQ-timing-Indicator fourni par le message DCI sur 3 bits. Les 3 bits donnent la position de la valeur K1contenu dans le vecteur dl-DataToUL-ACK.

A titre d’exemple, si la valeur DCI=010, et le vecteur dl-DataToUL-ACK est le suivant

dl-DataToUL-ACK {  8,  6,  4,  12 }

Dans ce cas, la valeur K1= 4 (010 est la 3ème position). Se référer à la table 9.2.3-1 « Mapping of PDSCH-to-HARQ_feedback timing indicator field values to numbers of slots » [3]

Le vecteur dl-DataToUL-ACK est contenu dans l’élément d’information de configuration du PUCCH (PUCCH Config IE). Cette valeur est transmise lors du message SIB1 dans le champ tdd-UL-DL-ConfigurationCommon ou lors d’un message de configuration RRC dans le champ tdd-UL-DL-ConfigurationDedicated.

Enfin, la valeur K2 correspond au décalage en nombre de slots entre la réception de l’information DCI et l’allocation des ressources dans le domaine temporel pour le canal de trafic montant PUSCH.

Figure 6 : L’allocation des ressources pour le lien montant (PUSCH) [2]

[0] Extrait du livre : NG-RAN et 5G-NR : L’accès radio 5G et l’interface radioélectrique

[1] http://howltestuffworks.blogspot.com/2019/12/5g-nr-pdsch-resource-allocation-in-time.html

[2] https://www.linkedin.com/pulse/5g-nr-k0k1-k2-time-domain-dl-ul-resource-allocation-naveen-chelikani/