La densité favorise-t-elle l’épidémie ? (épisode 26)

J’ai vu passer différentes analyses et travaux qui posent la question du lien entre la densité des territoires et l’épidémie en cours, la plupart du temps en supposant qu’une densité supérieure se traduirait par une propension à être contaminé, ou par un taux de mortalité, plus forts.

Je dis bien la plupart du temps, car le premier a en avoir parlé, Jacques Levy, pronostiquait l’inverse fin mars, dans un texte visible ici :

« En France, c’est le Grand Est et la Bourgogne-Franche-Comté qui ont les taux de mortalité les plus élevés et, même en tenant compte de la pyramide des âges, l’Île-de-France reste relativement épargnée ». (…) « On peut se demander si les citadins bénéficient d’une immunité particulière qui serait liée à leur forte exposition permanente à des agents pathogènes multiples. En tout cas, l’habitat dans une zone à forte urbanité (densité + diversité) apparaît plutôt protecteur. » (souligné par moi)

Il semble qu’il ait été démenti depuis : l’urbanité parisienne n’a pas protégé ses habitants.

A l’inverse, Jean-Pierre Orfeuil, dans un texte disponible ici, brasse tout un ensemble de statistiques par département pour évaluer l’impact de la densité sur la mortalité, sur la base desquelles il croit pouvoir affirmer en conclusion que “l’impact de la densité des territoires sur la mortalité Covid apparaît au moins égal et probablement supérieur à celui des facteurs de comorbidité comme l’âge”. Nadine Levratto, Mounir Amdaoud et Giuseppe Arcuri, dans ce qui constitue à ma connaissance le premier travail économétrique sur données françaises cherchant à expliquer les différences géographiques relatives à l’épidémie, estiment également l’impact de cette variable, parmi d’autres, variable qui joue significativement dans leurs différents modèles. Sur cette base, certains en vont même jusqu’à affirmer que “la ville dense a trahi ses habitants”.

J’aurai personnellement tendance à être très prudent sur ce lien supposé. D’abord parce que si des villes très denses sont touchées (New-York, Paris, Londres, …), d’autres le sont beaucoup moins (Los Angeles, Singapour, Shangaï, …). Ensuite parce que, dans le cas chinois, Wanli Fang et Sameh Wahba montrent clairement que la densité des villes n’influe pas sur le nombre de cas de Covid 19, mais que la distance à Wuhan, en revanche, joue un peu.

Creusons un peu sur le cas français, en nous appuyant sur les données départementales fournies par Santé publique France d’une part, et celles sur la densité fournies par le recensement de la population millésime 2016, d’autre part.

La carte des densités est la suivante :

La densité varie de 14,8 habitants au km² en Lozère, à 20 860,3 à Paris, en passant par 564,7 dans le Rhône, ou 454,2 dans le Nord. On peut ensuite représenter sous forme de nuage de points le lien entre densité (le logarithme de la densité plus précisément) et le taux de mortalité :

On voit clairement ressortir des départements d’Ile-de-France, qui allient forte densité et forte mortalité, mais aussi des départements à densité plus faible, qui pâtissent d’une mortalité au moins aussi forte (Territoire de Belfort, Haut-Rhin, Moselle, Vosges) pendant que d’autres (Nord, Rhône, …) ont une mortalité comparativement faible. Bref : c’est un peu le bazar.

Pour valider ou invalider ce sentiment, j’ai testé le lien entre le taux de mortalité, d’un côté, et la densité de population de l’autre : lorsqu’on estime la relation en prenant en compte l’ensemble des départements, le R² n’est pas totalement négligeable, il est de 23% (et le coefficient associé à la densité est positif et significatif au seuil de 1%). Ceci signifie que les différences de densité “expliquent” 22% des différences de taux de mortalité. Quand on teste la même relation en enlevant les départements d’Ile-de-France, le R² tombe à 4% (et le coefficient n’est plus significatif qu’au seuil de 5%). En dehors de l’Ile-de-France, la densité semble donc peu explicative.

Pour compléter, on peut identifier les départements pour lesquels la relation joue le moins bien, en calculant ce que l’on appelle les résidus : s’ils sont très négatifs, cela signifie que le taux de mortalité est très inférieur à ce que l’on attend vu la densité du département, et inversement pour les résidus très positifs. Dans le premier cas, on trouve la Haute-Garonne, le Vaucluse, le Finistère, l’Ile-et-Vilaine, la Loire-Atlantique et l’Hérault : taux de mortalité plus faible qu’attendu vu la densité. Dans le deuxième cas, on trouve le Territoire de Belfort, le Haut-Rhin, les Vosges, la Moselle et la Meuse.

La carte des résidus montre sans surprise une opposition, non pas entre les départements denses et les départements moins denses, mais entre un grand quart Nord-Est plus touché et des parties Ouest et Sud largement épargnées.

Une réflexion plus générale, sur la base de ces éléments : je crois que nous sommes face à une épidémie qu’il faut voir comme un processus, avec des territoires touchés les premiers en raison “d’accidents historiques” (le hasard dit autrement,  comme le rassemblement religieux ayant eu lieu sur Mulhouse, qui aurait pu avoir lieu ailleurs), au sein desquels s’enclenchent ensuite des processus cumulatifs locaux. Sans doute que la densité joue un peu ensuite sur l’ampleur du processus cumulatif local, comme pourrait jouer l’âge moyen pour le taux de mortalité, mais on ne peut pas en faire des facteurs explicatifs de la géographie de l’épidémie, qui reste pour une très large part le produit de processus multifactoriels et largement contingents.