Sélection de cellules – Principes Généraux

L’objectif de cet article est de présenter comment l’UE effectue sa sélection de cellule à la mise sous tension du mobile et quels sont les critères de re-sélection de cellules. On complètera l’étude en présentant les processus sur la gestion des cellules opérant lorsque le mobile est en veille [1-2]. Nous n’étudierons ni le cas particulier des services de proximité (PROSE), ni les communications V2X.

Merci à Sébastien Picant, expert SIM Orange pour les échanges et la relecture

  1. La mise sous tension du mobile

Lorsque le mobile s’allume, sa première tâche consiste à sélectionner un réseau mobile PLMN (Public Land Mobile Network) ou un réseau privé SNPN (stand-alone non-public network). Cette sélection est réalisée par l’UE en deux étapes : l’une est effectuée au niveau de la couche AS (Access Stratum) et l’autre est réalisée par la couche NAS (Non Access Stratum) (https://blogs.univ-poitiers.fr/f-launay/2015/01/25/protocoles-nas-et-protocoles-as/):

  • La couche NAS demande à la couche AS de lui fournir la liste des réseaux PLMNs qui diffusent autour de l’UE.
  • La couche NAS sélectionne le PLMN à partir des mesures réalisées par la couche AS soit de manière automatique, soit en mode manuel si l’utilisateur choisi ce mode.

Figure 1 : Processus de sélection de cellule [1]

En mode automatique, l’objectif pour le mobile est de camper sur le réseau de son opérateur, c’est-à-dire, le réseau HOME (H-PLMN). A défaut, l’UE va favoriser un réseau équivalent. Le mobile a donc besoin de récupérer les identités des PLMNs situés autour de lui afin de comparer les identités à une liste de sélection présente sur la carte UICC [3] (L’UICC Universal Integrated Circuit Card est la carte SIM).

Définition – camper sur une cellule [1] : “The MS looks for a suitable cell of the chosen PLMN or SNPN and chooses that cell to provide available services, and tunes to its control channel

Les identités PLMN sont diffusées dans le message d’information SIB-1 (plusieurs identités peuvent être diffusées, comme c’est le cas par exemple pour la diffusion de l’identité des MVNO – Mobile Virtuel Network Operator) via le TAI (Tracking Area Identifier). Le mobile stocke les valeurs TAI autorisées et non autorisées pour éviter des tentatives d’itinérance (roaming) lorsque le signal de l’opérateur H-PLMN est faible (cas à la frontière par exemple). Le mobile constitue également une liste de PLMNs non autorisés pour des accès satellitaires NTN (Non Terrestrial Network : PLMNs not allowed to operate at the present UE location).

L’UE dispose d’une liste de PLMN qui est enregistrée sur la carte UICC. Le Mobile ME doit utiliser les informations stockées sur la carte UICC pour la sélection de PLMN en fonction du service activé et de la présence du fichier correspondant (stocké dans l’UICC par exemple EF_EHPLMN, EF_PLMNwACT, EF_OPLMNwACT, …)

Les réseaux interdits ( sur lesquels le device s’est fait jeté – event « network rejection ») sont stockés dans la carte dans le fichier Forbidenn F-PLMN.

Le H-PLMN est extrait à partir de l’identité IMSI de l’UICC.

Dans l’UICC peuvent être stockés, par ordre de priorité, des réseaux PLMN (Public Land Mobile Network) considérés comme équivalents au réseau HOME dans la liste nommée EHPLMN (Equivalent Home PLMN).

Le terminal peut sélectionner le réseau « HOME » (ou equivalent HOME) en comparant l’identité MCC-MNC de l’opérateur couvrant la cellule avec :

  • les informations MCC-MNC de l’IMSI (HPLMN)

ou

  • avec la liste des réseaux équivalents « Equivalent Home » stockés dans le fichier EF_EHPLMN (Si le fichier EHPLMN est présent, l’UE va comparer uniquement avec les PLMN listés dans ce fichier. Pour qu’il compare également avec le HPLMN de l’IMSI, ce dernier doit être présent dans ce fichier).

 

Le processus de recherche du réseau HOME (ou équivalent HOME) peut être optimisé

avec la liste des réseaux Homes en priorisant le choix du PLMN avec le type d’accès radioélectrique autorisé stockés dans le fichier EF_HPLMNwACT

 

Selon le service activé sur la carte UICC, le mobile sélectionnera une des méthodes ci-dessus. Il est donc nécessaire que le fichier EF existe et soit non vide.

 

En cas d’itinérance à l’étranger (Roaming), le terminal peut sélectionner le réseau visité « Visited » à partir du :

  • EF PLMNwact (Extended Preferred Roaming List)

ou

  • EF_OPLMNwACT 

 

Le fichier EF OPLMNwact liste les réseaux étrangers pour lesquels l’opérateur a un accord d’itinérance (roaming) afin qu’un de ces réseaux soit sélectionné en priorité.

 

Il est possible de restreindre le type d’accès radioélectrique en intégrant à la liste des opérateurs PLMNwact ou OPLMNwact le type d’accès.

A titre d’exemple, le fichier EF_OPLMWwACT est plus restrictif car il peut imposer au mobile de sélectionner un réseau d’accès d’un PLMN (exemple 2G/3G) parmi les différents types de réseau du PLMN. On peut citer comme exemple l’accord d’itinérance 2G entre Free et Orange. Il faut donc que le fichier EF_OPLMNwACT soit enregistré et non vide pour que le terminal de Free, en cas de perte de couverture Free, sélectionne l’opérateur Orange mais uniquement en 2G/3G.

Evidemment, le sélecteur ou l’activation du service va déterminer quel fichier doit être utilisé. L’opérateur devra donc s’assurer de remplir les fichiers avec la liste des opérateurs souhaités.

Si par exemple, le mobile utilise la liste EF_PLMNsel, l’opérateur devra provisionner le fichier avec sa propre identité puisque la sélection par les informations MCC-MNC de l’IMSI n’a pas été activée.

Pour résumer, les fichiers pouvant être utilisée sont les suivants [5] :

  • EF_EHPLMN: contient la liste des PLMN qui peuvent être considérés comme un H-PLMN. Les éléments sont répertoriés par ordre de priorité décroissante, ce qui signifie que le premier PLMN de la liste a la priorité la plus élevée et que le dernier élément a la priorité la plus basse. (Se référer à 31.102 4.2.84 EF_EHPLMN pour le format de données détaillé, se référer à 23.122 4.4.3.1.1 pour la détermination de la priorité dans la sélection de cellule).
  • EF_HPLMNwAcT: ce fichier stocke le nom du H-PLMN en y associant la liste des technologies d’accès disponibles par ordre décroissant de priorité, ce qui signifie que le premier PLMN a la priorité la plus élevée. Cette liste est plus restrictive que la précédente.
  • EF_PLMNwACT: les informations contenues dans ce fichier sont déterminées par l’utilisateur et définissent les PLMN préférés de l’utilisateur par ordre de priorité.
  • EF_OPLMNwACT: ce fichier est le sélecteur PLMN contrôlé par l’opérateur avec les technologie d’accès associées. C’est dans ce fichier que l’opérateur Home provisionne les PLMN pour lesquels il a un accord d’itinérance. Ce paramètre contient la liste des couples (PLMN, Access Technology).

 

Le fichier OPLMNwact liste les réseaux étrangers pour lesquels l’opérateur a un accord de roaming afin que ce réseau soit sélectionné en priorité.

Il est possible de mettre à jour les fichiers de la carte SIM à distance via une plateforme (back-end) et la technologie OTA (Over The Air) ou par message NAS.

La technologie OTA permet de télécharger des applications vers la carte UICC, de communiquer et gérer la carte UICC à distance.

Le service de back-end transmet des requêtes de service vers la passerelle OTA qui les transforme en message SMS gérés par la plateforme SMSC ou par les protocoles CAT_TP ou https.

Une fois la carte UICC mise à jour, il faut forcer le terminal pour prendre en compte les modifications apportées.

Il existe plusieurs commandes pour relire la carte UICC [4,6,7]:

  • Reset UICC
  • Refresh
  • Déclenchement du mode Steering or Roaming SoR

En cas de Roaming, le déclenchement du mode SoR (Steering of Roaming [8]) permet :

  • D’autoriser un UE enregistré sous son réseau opérateur Home HPLMN de sélectionner un réseau VPLMN qui n’est pas dans la liste des réseaux interdits
  • A l’UE de détecter si le VPLMN sélectionné est capable de transmettre des informations de contrôle SoR émise par le HPLMN.

Le plan de contrôle SoR permet au réseau opérateur Home H-PLMN de mettre à jour de manière sécurisée le ficher EF OPLMWact (c’est-à-dire la liste de sélection PLMN et l’accès radioélectrique).

Si la commande de déclenchement SoR est désactivée, il faut forcer le terminal en l’éteignant/l’allumant pour relire le fichier EF OPLMWact.

Si la commande SoR est activée, il est possible de rafraîchir des données PLMN (commande refresh). Ce mode permet à l’UICC de mettre à jour la liste de PLMNs à l’UE pour qu’il la prenne en compte dans sa sélection de réseau.

Pour cela il faut envoyer la commande USAT REFRESH [4,9] (USIM Application Toolkit) a une application sur la carte UICC qui va déclencher la mise à jour sans avoir besoin de forcer la re-sélection du réseau. Dans ce cas, le mobile remplace l’entrée prioritaire du fichier EF  OPLMNwAcT par la liste fournit lors de la commande USAT REFRESH.

En cas d’absence de réseau (ou le réseau du pays visité n’est pas déclaré dans la liste OPLMWact), l’UE fait une procédure d’attachement avec le réseau visité. Le MME interroge le HSS de l’opérateur Home, lequel donne son accord ou refuse le roaming. Si le HSS de l’opérateur Home accepte l’attachement, le réseau visité peut avoir des partenariats (réseaux équivalents) dont la liste est transmise du MME visité à l’UE. L’UE conservera cette liste, mais ne l’enregistre pas au niveau de l’UICC (il n’y a pas de mise à jour de l’USIM).

Dans le cas où le sélecteur PLMN s’appuie sur le fichier OPLMNwaCt, alors lorsque le mobile a sélectionné le réseau préféré (H-PLMN, E-PLMN ou V-PLMN), il va ensuite procéder au choix de la technologie radioélectrique associée.

Références

[1] TS 23.122 V17.7.1 (2022-06) Non-Access-Stratum (NAS) functions related to Mobile Station (MS) in idle mode

 

[2] TS 36.304 v17.1.0 (Juin 2022), Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode

[3] TS 31.121 version 16.0.0 Release 16, UICC-terminal interface; Universal Subscriber Identity Module (USIM) https://www.etsi.org/deliver/etsi_ts/131100_131199/131121/16.00.00_60/ts_131121v160000p.pdf

[4] 3GPP TS 31.111, Universal Subscriber Identity Module (USIM) Application Toolkit (USAT)

[5] https://www.sharetechnote.com/html/Handbook_LTE_USIM_Parameters.html

[6] ETSI TS 102 221 : Smart cards; UICC-Terminal interface; Physical and logical characteristics

[7] https://www.gsma.com/newsroom/wp-content/uploads/SGP.02-v4.0.pdf

[8] https://www.gsma.com/newsroom/wp-content/uploads//IR.73-v5.0.pdf

La sécurité des réseaux mobiles – Part 4

Les précédents articles sur le même sujet :

La sécurité sur les réseaux de mobiles – Part 1

La sécurité sur les réseaux de mobiles – Part 2

La sécurité sur les réseaux de mobiles – Part 3

II-2) La sécurité sur le réseau 4G

Le réseau en 4G est en réseau en tout IP, et par conséquent, plus sensible sur la sécurité IP. Au niveau de l’accès radioélectrique, la station de base 4G, nommé eNB, rassemble le contrôleur RNC avec la station de base.

Ainsi, le protocole PDCP se situe au niveau de l’eNB. Le chiffrement et l’intégrité sont réalisés par l’eNB en 4G.

Les algorithmes de chiffrement et d’intégrité ont été partiellement redéfinis dans le cas des réseaux de quatrième génération. Ils s’appuient sur deux algorithmes, respectivement fondés sur Snow 3G et AES.

Ainsi, deux standards ont été proposés pour la 4G :

  • chiffrement : Algorithme EEA (EPS Encryption Algorithm) ;
  • intégrité : Algorithme EIA (EPS Integrity Algorithm).

A partir de l’algorithme SNOW3G [6], la 3GPP propose les algorithmes 128-EEA1/128-EIA1.

A partir de l’algorithme AES (Advanced Encryption Standard), la 3GPP propose les algorithmes 128-EEA2/128-EIA2.

A partir de l’algorithme ZUC [7], la 3GPP propose les algorithmes 128-EEA3/128-EIA3.

Tableau 1 : La méthode de chiffrement et la complexité

Les clés de chiffrement et d’intégrité sont calculées à partir de la clé Ki privée et du numéro aléatoire (aléa RAND) fournit au mobile pour l’authentification. Nous allons donc revenir sur la procédure d’authentification en 4G.

Figure 12 : La procédure d’authentification 4G

Se référer aux articles :

La figure 12 présente la procédure d’attachement avec le calcul des clés et les algorithmes associés :

Figure 13 : Procédure d’authentification 4G [8]

Comme en 3G (se référer à la figure 6), le jeton d’authentification contient trois champs :

  • le numéro de séquence SQN embrouillé avec la clé d’anonymat A;
  • la valeur du champ d’authentification AMF ;
  • la signature MAC du message.

La signature est calculée par l’algorithme f1.

Les clés Ck, IK, AK et le résultat d’authentification du mobile RES sont calculés par les algorithmes f2, f3, f4 et f5. La spécification [9] fournit les algorithmes en langage de programmation C.

Figure 14 : le calcul des clés pour la procédure d’authentification en 4G

La carte USIM contient la clé privé Ki. La valeur AMF est fourni avec le vecteur AUTN. OP est une valeur codée sur 128 bits qui est définie par l’opérateur nominal. La clé peut être publique ou secrète. La clé OPc est dérivée de la clé OP à partir de la clé Ki. La clé OPc est stockée dans la carte UICC.

La carte UICC stocke la valeur SQN (cette valeur change à chaque authentification).

Figure 15 : L’algorithme MILENAGE [9]

A l’issu de la phase d’authentification, à partir de la clé privée Ki et de l’aléa RAND :

  • L’entité HSS dérive les clés CK et IK;
  • l’entité HSS dérive la clé KASME à partir de Ck et Ik;
  • l’entité MME dérive les clés KNASenc, KNASInt, KeNB à partir de la clé KASME;
  • l’entité eNB dérive les clés Kupint, Kupenc, kRRCint, KRRCenc.

Les clés de chiffrements utilisées sont :

  • KNASenc pour le chiffrement des messages NAS (UE <-> MME) ;
  • Kupenc pour le chiffrement des messages de données sur l’interface radioélectrique ;
  • KRRCenc pour le chiffrement des messages de contrôle (signalisation) sur l’interface radioélectriques.

Les clés d’intégrités utilisées sont :

  • KNASint pour la signature MAC des messages NAS (UE <-> MME) ;
  • KRRCint pour la signature des messages de contrôle (signalisation) sur l’interface radioélectriques ;
  • Optionnellement (non mis en œuvre en 4G et optionnel en 5G), Kupint pour la signature des messages de données.

La fonction USIM sur la carte UICC réalise l’étape 1 (dérive les clés CK et IK ). Le mobile dérive toutes les autres clés (étapes 2 à 4).

Figure 16 : Le calcul des clés en 4G

Si le mobile fait une procédure d’accès sur le réseau WiFi, le cœur de réseau 4G réalise une nouvelle procédure d’authentification par la méthode EAP-AKA. Celle-ci est décrite en section 3.

Les deux faiblesses de la méthode d’authentification EPS-AKA sont :

  • la transmission en clair de l’identité IMSI. Même si un identifiant temporaire GUTI (Globally Unique Temporary Identity) est ensuite utilisé pour cacher l’identité IMSI sur l’interface radioélectrique LTE, cette identifiant n’est pas modifié assez fréquemment, et l’identité est prédictible. De plus, un réseau pirate peut demander au mobile de retransmettre son identité IMSI en clair ;
  • le réseau nominal fournit au réseau visité le vecteur d’authentification. Il délègue la décision d’authentification au réseau visité.

 

La sécurité sur les réseaux de mobiles – Part 1

Merci à Tony Boucheau pour la relecture de l’article

 Introduction

A l’exception des appels d’urgence, le client mobile n’a accès à aucun des services offerts par le cœur de réseau mobile tant que celui-ci n’est pas authentifié.

Les échanges liés au processus d’authentification sont relayés par le point d’accès vers le serveur d’authentification. Le point d’accès est en général une station de base 2G/3G/4G/5G. Toutefois, le point d’accès WiFi est également vu comme une passerelle radioélectrique permettant de connecter l’utilisateur mobile au cœur de réseau 5G.

Une fois le client authentifié, le point d’accès laisse passer le trafic. Afin de garantir le secret des informations échangées, les données sont chiffrées et un contrôle d’intégrité par une signature MAC (Message Authentication Code) permet de vérifier l’authenticité de l’émetteur.

Le chiffrement est mis en place entre les acteurs de la transaction ce qui garantit que la session devient inintelligible aux autres personnes. Enfin, pour se prémunir des attaques de type Man in the Middle (IMSI Catcher), l’intégrité des données permet de vérifier que les données de signalisation échangées n’ont pas été altérées (de manière fortuite ou intentionnelle). Le chiffrement et l’intégrité sont réalisés au niveau du terminal et :

  • si le point d’accès est une station de base 4G ou 5G, celle-ci apporte un chiffrement sur le trafic de données et sur le trafic de signalisation ainsi qu’un contrôle d’intégrité sur la signalisation. Optionnellement, pour le réseau 5G, le contrôle d’intégrité peut aussi s’appliquer sur le trafic des données. Les clés de chiffrement et d’intégrité sont dérivées à partir d’une clé secrète et à partir des paramètres échangés lors du processus d’authentification ;
  • si le point d’accès est une station de base 2G, le chiffrement est réalisé au niveau de la station de base pour les communications téléphoniques et au niveau du SGSN pour les sessions IP ;
  • si le point d’accès est une station de base 3G, le chiffrement est réalisé au niveau du contrôleur RNC ;
  • si le point d’accès est un point WiFi, un tunnel est mis en œuvre entre le mobile et une entité de passerelle WAG (Wireless Access Gateway). Cette entité se nomme ePDG (evolved Packet Data Gateway) pour le réseau 4G et N3IWF pour le réseau 5G.

 

Le processus d’authentification a pour objectif de vérifier l’identité d’un client (aussi nommé pair ou supplicant). Le protocole d’authentification spécifie le format des messages échangés (requêtes/réponses) entre le client et l’authentificateur. En se basant sur l’identité présumée du client, l’authentificateur transmet au client un défi (un challenge). A partir du défi, le client calcule sa réponse qu’il transmet à l’authentificateur. Cette réponse permettra à l’authentificateur soit d’authentifier le client soit de démasquer un usurpateur d’identité.

L’architecture d’authentification est composée d’un point d’accès, d’un authentificateur et d’un serveur d’authentification. Dans le cas des réseaux de mobiles, l’authentificateur et le serveur d’authentification sont deux entités distinctes : le serveur d’authentification correspond à l’entité HSS pour les réseaux de mobiles 4G ou à l’entité UDM pour les réseaux de mobiles 5G. Le serveur d’authentification (HSS/UDM) est situé en back-end de l’authentificateur. La fonction d’authentificateur est gérée par l’entité MME en 4G ou par la fonction AMF en 5G.

Les étapes d’authentification sont les suivantes :

  • L’authentificateur reçoit une demande d’identification de la part d’un client comprenant l’identité du client. Cette requête peut être initiée par le client ou par l’authentificateur. A partir de cette demande d’identification, l’authentificateur transmet un défi au client ;
  • Le client calcule la réponse au défi et transmet la réponse à l’authentificateur ;
  • L’authentificateur contrôle la réponse en comparant la réponse du client à la réponse attendue.

L’authentificateur interroge le serveur d’authentification en lui fournissant l’identité du client. Le serveur d’authentification vérifie l’existence de l’identité du client, et le cas échéant génère un défi. Le client peut supporter plusieurs méthodes d’authentification. Le défi est choisi selon la méthode d’authentification supportée par le client. Le défi et la réponse sont transmises à l’authentificateur.

Pour les réseaux de mobiles, le client est la carte UICC et les méthodes d’authentifications sont définies dans l’application USIM (et dans l’application ISIM pour l’authentification avec le réseau IMS).

La carte UICC contient une identité IMSI unique et une clé d’authentification Ki. Ces deux informations sont stockées au niveau du serveur d’authentification.