Evolution de la pile protocolaire LTE vers NR (2/5)

Suite de l’article

La couche MAC [TS 38.321]

La couche MAC transmet ou reçoit :

  • de la couche physique des canaux de transport (interface L1 : Layer 1),
  • de la couche RLC des canaux logiques

Figure 2 : Les canaux de la pile protocolaire LTE/NR

 

L’unité de données protocole de couche MAC (MAC-PDU) remplit le bloc de transport TB (Transport Block).

Le bloc de transport est défini par la signalisation L1 (L1 signaling) c’est à dire sa taille et des paramètres physique comme le schéma de modulation et de codage MCS et la longueur du slot.

La couche MAC transporte les données utilisateurs (plan de trafic) et les données de signalisation (plan de contrôle). Différentes structures de la couche MAC ont été définies et l’élément de contrôle MAC CE (Control Element) transport de la signalisation.

La structure MAC est définie par dans l’en-tête MAC (MAC Header) via l’information LCID (Logical Channel ID)

Figure 3 : Liste des MAC CE

 

La structure de la couche MAC PDU pour la transmission de données (UL-SCH et DL-SCH) est optimisée pour transporter des grandes quantités de données, en utilisant notamment la fonctionnalité de concaténation des données de la couche RLC : plusieurs MAC SDU peuvent être multiplexée dans une seule MAC PDU.

Contrairement en 4G ou l’en-tête MAC contient un ensemble de sous-entête pour chaque CE ou SDU, la MAC PDU se découpe en sous en-tête MAC suivi du CE ou du SDU. Cette structure facilite le traitement en pipeline au niveau de l’émetteur et du récepteur et le traitement démarre dès qu’une sous en-tête et le SDU ou le CE associé est reçu.

MAC PDU LTE

Figure 4a : MAC PDU LTE en DL

MAC PDU NR

MAC PDU NR

Figure 4b : MAC PDU NR en DL

La taille du SDU ou le champs LCID pour la MAC CE est dynamiquement indiquée dans l’en-tête.

Les rôles de la sous-couche MAC sont [FL2]:

  • la correspondance entre les canaux logiques et les canaux de transport;
  • le multiplexage/démultiplexage des unités de données de services MAC SDU en provenance d’un canal logique ou de plusieurs canaux de transport (TB) ou de plusieurs canaux de transport à destination des canaux logiques ;
  • La concaténation des MAC-SDU lors du multiplexage des unités de données.
  • La demande de transmission de données de la part du mobile (BSR : Buffer Status Reporting)
  • la correction d’erreur rapide HARQ ;
  • la gestion de priorité entre les mobiles ;
  • la gestion de priorité sur les canaux logiques pour un mobile ;
  • la gestion des échecs radio de faisceau

MAC

Figure 5 : La structure MAC

La gestion des faisceaux est la principale nouveauté de l’interface NR par rapport à l’interface LTE. Toutefois, pour faciliter la gestion du très haut débit, la fonction concaténation est réalisée au niveau de la couche MAC 5G (RLC en 4G)

La fonction de séquencement et la gestion de la priorité

La couche MAC priorise les données reçues de la couche RLC en fonction de la nature des données (canal logique CCCH, DCCH et DTCH).

Au niveau du terminal, la couche MAC implémente la fonction LCP afin de séquencer les données sur le lien montant. L’ordonnanceur de la fonction LCP détermine la taille des données qui seront multiplexées à partir des différents canaux logiques LCH pour former un MAC PDU. Chaque LCH est caractérisé par une priorité PBR (Prioritized Bit Rate) et une durée de la taille du paquet (BSD : Bucket Size Duration). La fonction LCP implémente également des restrictions comme la fenêtre d’acquittement selon le type de service (URLLC, eMBB, mMTC), l’espacement entre sous-porteuses (SCS : Sub Carrier Spacing), le type d’allocation de ressource (dynamique – Dynamic Scheduling ou configuré – Configured Grant [FL1]) et le type de slot (mini-slot). Enfin des restrictions sont également fournie de la part de la couche PDCP à la couche MAC dans le cas de la duplication de paquets afin de ne pas multiplexer deux paquets dupliquer dans une seule MAC PDU.

La fonction LCP est contrôlée par la couche RRC qui configure les restrictions sur chaque canal LCH (figure 6) :

  • allowedSCS-List définit les valeurs SCS proposées pour la transmission ;
  • maxPUSCH-Duration indique la durée de transmission PUSCH maximale ;
  • configuredGrantType1Allowed informe si la transmission est préconfigurée de type 1 (Configured Grant Type 1) ou dynamique;
  • allowedServingCells which indique les cellules autorisées pour la transmission ;
  • allowedCG-List qui indique les configurations autorisées (CG) pour la transmission ;
  • allowedPHY-PriorityIndex allouant les index de priorités aux transmissions allouées dynamiquement.

Le séquencement sur la voie montante (UL Scheduling) est réalisé à partir d’informations physiques fournies par la station de base gNB

Figure 6 : la configuration des canaux logiques et le paramétrage de séquencement

 Afin d’assister le gNB sur les décisions radio de l’UE, d’autres fonctions (similaires en 4G) sont implémentées au niveau de la couche MAC comme la fonction SR (Scheduling Request), BSR et PHR (Power Headroom Report).

Les procédures de la couche MAC

La couche MAC est à l’initiative des procédures suivantes :

  • l’accès aléatoire [FL3]
  • la transmission de données (DL assignments, UL scheduling request)
  • La demande de séquencement -SR procedure : l’entité MAC CE de l’UE informe le gNB de données à émettre de la part du terminal. Différentes configurations SR permettent de prioriser l’émission de canaux logique UL LCH.
  • La procédure BSR permet à la couche MAC UE d’indiquer au gNB la quantité de données stockée dans le buffer de l’UE par groupe de canaux logiques LCG (Logical Channe Group). Le BSR est transmis dans une structure MAC CE sur 2 octets (short BSR/truncated BSR) ou 4 octets (long BSR). Les valeurs du LCID sont :
    • 11100 Truncated BSR
    • 11101 Short BSR
    • 11110 Long BSR

L’Interface NR implémente 8 LCG au lieu de 4 pour le LTE (l’information LCG n’était que sur 2 bits).

La couche RRC contrôle la procédure BSR en configurant 3 temporisateurs (le déclenchement BSR peut être régulier, périodique, ou padding) :

  • periodicBSR-Timer (periodic BSR)
  • retxBSR-Timer ( (regular BSR)
  • logicalChannelSR-ProhibitTimer
  • la procédure PHR (Power Headroom Report) permet à la couche MAC UE d’envoyer un rapport au gNB lui indiquant la réserve de puissance du mobile avant d’émettre à la puissance maximale. Le PH est transmis à chaque cellule serveuse qui configure la porteuse UL (dans le cas de l’agrégation de porteuses CA). Cela permet d’assister le gNB sur la décision du MCS dans le cas du séquencement montant. Le PHR est transmis dans une structure MAC CE. Deux types de PHR sont définis : périodique ou déclenchement sur seuil (RSRP). Ces valeurs de déclenchement sont configurées par la couche RRC lors d’un message RRC Setup, RRC Reconfiguration, .. (cf. FL4) dans l’IE PHR-Config (PeriodicPHR-Timer, ProhibitPHR-TImer, dl-pathlossChange)
  • la réception discontinue DRX pour réduire la consommation énergétique du terminal. Le mode DRX contrôle le moment ou le terminal écoute le canal PDCCH (décision d’ordonnancement) à travers plusieurs temporisateur [FL5]. La différence principale par rapport au LTE est sur la gestion de différents SCS configurés sur différentes cellules.

Pour la transmission montante, la configuration Grant-Free Scheduling [FL6] permet de réduire encore davantage la consommation énergétique (selon les restrictions LCP)

  • la commutation de BWP
  • la surveillance d’inactivité
  • la gestion du faisceau : La gestion de l’échec de faisceau (Beam Failure Management) est gérée par la couche MAC à partir de mesures de la couche physique (BFI : Beam Failure Instance). Deux procédures sont impliquées :
    • Procédure BFD (Beam Failure Detection) à partir de la mesure de la couche physique L1-RSRP (en dessous d’une certaine limite).
    • Procédure BFR ( Beam Failure Recovery)

La couche RRC contrôle les paramètres des procédures BFD et BFR dans les paramètres suivants : BeamFailureRecoveryConfig, BeamFailureRecoverySCellConfig et  RadioLinkMonitoringConfig

  • beamFailureInstanceMaxCount pour la détection de la défaillance du faisceau;
  • beamFailureDetectionTimer pour la détection de la défaillance du faisceau;
  • beamFailureRecoveryTimer pour la procédure de récupération d’un faisceau au niveau de la cellule SpCell ([FL7]);
  • rsrpThresholdSSB: la valeur seuil du RSRPpour la procédure SpCell beam failure recovery;
  • rsrpThresholdBFR: la valeur seuil du RSRP pour la procédure SCell beam failure recovery;

Références

[FL1] https://blogs.univ-poitiers.fr/f-launay/2020/05/15/e2e-network-slicing-le-decoupage-du-reseau-de-bout-en-bout-partie-3/

[FL2] :  https://blogs.univ-poitiers.fr/f-launay/2022/05/13/sdt-small-data-transmission-3eme/

[FL3] : https://blogs.univ-poitiers.fr/f-launay/2023/03/22/lacces-aleatoire-pour-les-terminaux-lte-ue-et-lte-bl-ce-ue-et-nb-iot-4step-ra-et-2-step-ra/

[FL4] : https://blogs.univ-poitiers.fr/f-launay/2023/03/21/les-supports-de-signalisation-srb-signaling-radio-bearer/

[FL5] : https://blogs.univ-poitiers.fr/f-launay/2016/11/04/paging-et-mecanisme-psmdrx/

[FL6] : https://blogs.univ-poitiers.fr/f-launay/2023/03/19/liot-evolutions-r16-et-r17/

[FL7] https://blogs.univ-poitiers.fr/f-launay/2022/07/20/pcell-scell-pscell-et-spcell/

[TS 38.321] Medium Access Control (MAC) protocol specification (3GPP TS 38.321 version 16.3.0 Release 16)

Evolution de la pile protocolaire LTE vers NR

Introduction

Dans ces 4 articles, nous allons expliquer l’évolution des protocoles radioélectriques LTE/NR permettant :

  • de transmettre différents formats de paquets IP sur la couche physique (LTE/NR), mais également la transmission de trames Ethernet (supportée par la NR uniquement). Les paquets de données, Ethernet ou IP, sont transmis dans des supports radio nommés DRB (Data Radio Bearer) ;
  • de transmettre de manière fiable des messages du protocole RRC à travers des supports de signalisation SRB (Signaling Bearer Data) [FL1]

La transmission est assurée par différentes sous-couches protocolaires héritées des réseaux antérieurs (3G/4G).

Toutefois :

  • pour améliorer la transmission de données, certaines fonctionnalités sont gérées de manière différentes en 4G et 5G comme par exemple :
    • la concaténation est effectuée au niveau de la couche MAC NR et au niveau de la couche RLC LTE
    • la structure MAC PDU NR contient une suite de sous-en-tête MAC immédiatement suivi du SDU ou d’un élément de contrôle (différemment de la structure de la couche MAC LTE) ;
    • la couche MAC NR gère la gestion des faisceaux (Beam Management)
    • la couche MAC de l’UE implémente la fonction LCP (Logical Channel Priority)
  • pour gérer les solutions de double connectivité MR-DC (Multi-Rat Dual Connectivity), la fonction PDCP supporte la séparation des paquets. Ainsi la re numérotation des paquets est également réalisée au niveau de la couche PDCP NR et RLC LTE.
  • pour améliorer la fiabilité des données par duplication des paquets. La couche PDCP est à nouveau utilisée pour dupliquer le paquet en mode DC ou en mode CA.

De plus, la NR est conçue pour un déploiement Cloud (C-RAN/O-RAN). Le protocole est donc pensé pour être implémenté sur des serveurs physiques (datacenter) différents.

Rappels généraux sur les concepts réseaux

Les données sont transmises de sous-couches en sous-couches par des primitives. On appelle SDU (Service Data Unit) les données échangées dans les primitives de services. Il s’agit donc des données utiles qu’une sous-couche N+1 (respectivement N) transmet à une autre sous-couche N (respectivement N+1).

Un protocole défini des règles d’échange de service entre entité de même couche.  Les données échangées par un protocole d’une sous couche N à son homologue de couche N sont nommées PDU (Protocol Data Unit). Un PDU est constitué d’un en-tête (information de contrôle PCI Protocol Control Information) et de données de service SDU : plusieurs SDU de la couche N+1 (respectivement N-1) peuvent être transportés par encapsulation/dés-encapsulation dans un même PDU de la couche N à son homologue de couche N.

Figure 1 : La pile protocolaire NR pour le plan de trafic

Les 4 articles suivants seront consacrés respectivement à la couche MAC, RLC, PDCP et SDAP.

Référence : 

[FL1] : https://blogs.univ-poitiers.fr/f-launay/2023/03/21/les-supports-de-signalisation-srb-signaling-radio-bearer/

 

La sécurité sur les réseaux de mobiles – Part 3

Précédents articles : 

La sécurité sur les réseaux de mobiles – Part 1

La sécurité sur les réseaux de mobiles – Part 2

2. La protocole AKA

II-1) La sécurité sur le réseau 3G :

Le protocole d’authentification GSM n’est pas fiable. D’une part, l’authentification étant unilatérale, le mobile peut s’attacher à un réseau pirate et d’autre part, l’algorithme COMP128 a été cassé en 1997 (figure 3 : attaque Narrow Pipe en 1998) :

Figure 5 : L’algorithme COMP128 [1]

De plus, le réseau pouvant négocier l’algorithme de chiffrement en 2G, il est possible de récupérer en clair les données échangées.

Afin de sécuriser l’attachement du mobile et interdire l’attachement sur un réseau pirate, le protocole AKA (Authentication and Key Agreement) exige une authentification bilatérale.

Le cœur de réseau 3G est identique au cœur de réseau 2G, l’amélioration de la sécurité est apportée au niveau du mobile par l’application USIM sur la carte UICC et d’une mise à jour de la fonction AuC du serveur d’authentification HLR. Pour réaliser l’authentification du réseau, une nouvelle clé AMF (Authentication Management Field) est inscrite dans la carte UICC et dans le HLR.

Le vecteur d’authentification généré par l’AuC contient :

  • l’aléa RAND sur 128 bits ;
  • le résultat d’authentification attendu SRES (32 bits à 128 bits);
  • le sceau d’authentification du réseau opérateur AUTN (128 bits);
  • une clé de chiffrement Ck(128 bits) ;
  • une clé d’intégrité Ik (128 bits).

Le résultat SRES, le sceau AUTN, les clés de chiffrements Ck et Ik sont calculés à partir de l’aléa RAND, de la clé privé symétrique Ki et d’une séquence SQN (figure 6).

Figure 6 : Calcul du vecteur d’authentification 3G

Le vecteur d’authentification est transmis à l’authentificateur VLR ou SGSN. Ce dernier envoie l’aléa RAND et la sceau d’authentification AUTN au mobile, lequel le transfert à la carte UICC.

Le sceau d’authentification est composé de 3 champs qui sont embrouillés par une séquence de 128 bits :

  • une clé d’anonymat Ak (Anonimity Key) sur 48 bits ;
  • la valeur AMF (Authentication Management Field) sur 16 bits ;
  • d’un message de signature d’authentification MAC.

f1 et f2 sont deux fonctions d’authentification. f3, f4 et f5 sont des fonctions de génération de clés (KDF : Key Derivation Function).

Le choix des algorithmes f1, f2, f3, f4 et f5 est spécifique à l’opérateur. Cependant un choix d’algorithmes appelé MILENAGE est proposé par la spécification 3GPP [2] [3].

A partir de sa clé Ki, et de l’aléa, l’application USIM calcule d’abord la clé d’anonymat et récupère ainsi la valeur SQN (par un OU exclusif avec AK et le premier champs AUTN).

Ensuite, le mobile calcule :

  • le message d’authentification XMAC=f1(Ki, AMF, SQN) ;
  • le résultat RES attendu par le cœur de réseau f2(Ki,RAND).

Le résultat RES calculé au niveau de la carte UICC est transmis au mobile qui l’envoie à l’authentificateur. L’authentificateur compare le résultat RES du mobile avec la valeur attendue SRES.

Enfin, la carte UICC vérifie la correspondance entre la signature XMAC calculée avec le champ MAC contenu dans le sceau d’authentification AUTN. Cela permet d’éviter les attaques de type Man In The Middle. Si les valeurs sont identiques, l’application USIM calcule le résultat d’authentification (figure 7).

Figure 7 : Les étapes d’authentification pour la 3G et détection d’une station de base pirate

Ensuite, le mobile dérive les clés de chiffrement Ck et d’intégrité Ik à partir des fonctions f3 et f4.

Alors qu’en 2G le chiffrement et le déchiffrement sont réalisés au niveau de la BTS pour les sessions téléphoniques et au niveau du SGSN pour le trafic IP, en 3G le chiffrement et le déchiffrement s’effectuent au niveau du RNC (Radio Network Controller).

Ainsi, la clé CK doit être transférée du VLR au RNC via la commande security mode command gérée par le protocole RANAP (Radio Access Network Application Part). Ensuite, le RNC active le chiffrement au niveau du mobile via le message RRC security mode command.

Figure 8 : La procédure d’authentification et de chiffrement [5]

La clé Ck est calculée à chaque processus d’authentification. Le chiffrement est réalisé par un ou exclusif entre un bloc de données et un flux de chiffrement. Le flux de chiffrement est calculé à partir de l’algorithme f8 avec comme paramètres :

  • la clé Ck;
  • un compteur COUNT-C sur 32 bits ;
  • l’identité du support radio (BEARER) sur 5 bits ;
  • la direction de transmission (UpLink =0/DownLink =1) ;
  • la longueur du flux de chiffrement (le bloc de donnée à chiffrer).

Figure 9: Le chiffrement des données

L’algorithme f9 est utilisé pour le calcul d’intégrité :

Figure 10 : La signature d’intégrité des données

La valeur FRESH est une variable aléatoire généré par le RNC. La clé IK étant générée lors de l’enregistrement, celle-ci n’est pas modifiée tant que le mobile ne se détache pas. La valeur FRESH permet de modifier régulièrement la signature. Cette valeur est transmise au mobile au cours de la demande de connexion RRC.

D’un point de vue implémentation algorithmique, la valeur FRESH n’est pas réellement aléatoire, elle est souvent prise égale à la valeur du BEARER.

Le compteur COUNT-I protège le récepteur d’une attaque Man In The Middle : le prochain message, le compteur est incrémenté et la signature MAC pour le même message sera différente.

Les algorithmes d’authentification sont connus sous le nom de MILENAGE.

Les algorithmes de chiffrement f8 et f9 sont des algorithmes de KASUMI (déjà utilisé en 2G pour l’algorithme A5/3). Plus récemment, l’algorithme Snow 3G est un algorithme de chiffrement à flot pouvant remplacer l’algorithme KASUMI. L’algorithme SNOW3G est aussi utilisé pour fournir un message d’intégrité MAC (aussi nommé algorithme UIA2).

Figure 11 : Le calcul des clés en 3G

L’intégrité est calculé au niveau de la couche RRC, le chiffrement est réalisé au niveau de la couche RLC (sauf pour le mode transparent ou le chiffrement est réalisé par la couche MAC)

La sécurité sur les réseaux de mobiles – Part 1

Merci à Tony Boucheau pour la relecture de l’article

 Introduction

A l’exception des appels d’urgence, le client mobile n’a accès à aucun des services offerts par le cœur de réseau mobile tant que celui-ci n’est pas authentifié.

Les échanges liés au processus d’authentification sont relayés par le point d’accès vers le serveur d’authentification. Le point d’accès est en général une station de base 2G/3G/4G/5G. Toutefois, le point d’accès WiFi est également vu comme une passerelle radioélectrique permettant de connecter l’utilisateur mobile au cœur de réseau 5G.

Une fois le client authentifié, le point d’accès laisse passer le trafic. Afin de garantir le secret des informations échangées, les données sont chiffrées et un contrôle d’intégrité par une signature MAC (Message Authentication Code) permet de vérifier l’authenticité de l’émetteur.

Le chiffrement est mis en place entre les acteurs de la transaction ce qui garantit que la session devient inintelligible aux autres personnes. Enfin, pour se prémunir des attaques de type Man in the Middle (IMSI Catcher), l’intégrité des données permet de vérifier que les données de signalisation échangées n’ont pas été altérées (de manière fortuite ou intentionnelle). Le chiffrement et l’intégrité sont réalisés au niveau du terminal et :

  • si le point d’accès est une station de base 4G ou 5G, celle-ci apporte un chiffrement sur le trafic de données et sur le trafic de signalisation ainsi qu’un contrôle d’intégrité sur la signalisation. Optionnellement, pour le réseau 5G, le contrôle d’intégrité peut aussi s’appliquer sur le trafic des données. Les clés de chiffrement et d’intégrité sont dérivées à partir d’une clé secrète et à partir des paramètres échangés lors du processus d’authentification ;
  • si le point d’accès est une station de base 2G, le chiffrement est réalisé au niveau de la station de base pour les communications téléphoniques et au niveau du SGSN pour les sessions IP ;
  • si le point d’accès est une station de base 3G, le chiffrement est réalisé au niveau du contrôleur RNC ;
  • si le point d’accès est un point WiFi, un tunnel est mis en œuvre entre le mobile et une entité de passerelle WAG (Wireless Access Gateway). Cette entité se nomme ePDG (evolved Packet Data Gateway) pour le réseau 4G et N3IWF pour le réseau 5G.

 

Le processus d’authentification a pour objectif de vérifier l’identité d’un client (aussi nommé pair ou supplicant). Le protocole d’authentification spécifie le format des messages échangés (requêtes/réponses) entre le client et l’authentificateur. En se basant sur l’identité présumée du client, l’authentificateur transmet au client un défi (un challenge). A partir du défi, le client calcule sa réponse qu’il transmet à l’authentificateur. Cette réponse permettra à l’authentificateur soit d’authentifier le client soit de démasquer un usurpateur d’identité.

L’architecture d’authentification est composée d’un point d’accès, d’un authentificateur et d’un serveur d’authentification. Dans le cas des réseaux de mobiles, l’authentificateur et le serveur d’authentification sont deux entités distinctes : le serveur d’authentification correspond à l’entité HSS pour les réseaux de mobiles 4G ou à l’entité UDM pour les réseaux de mobiles 5G. Le serveur d’authentification (HSS/UDM) est situé en back-end de l’authentificateur. La fonction d’authentificateur est gérée par l’entité MME en 4G ou par la fonction AMF en 5G.

Les étapes d’authentification sont les suivantes :

  • L’authentificateur reçoit une demande d’identification de la part d’un client comprenant l’identité du client. Cette requête peut être initiée par le client ou par l’authentificateur. A partir de cette demande d’identification, l’authentificateur transmet un défi au client ;
  • Le client calcule la réponse au défi et transmet la réponse à l’authentificateur ;
  • L’authentificateur contrôle la réponse en comparant la réponse du client à la réponse attendue.

L’authentificateur interroge le serveur d’authentification en lui fournissant l’identité du client. Le serveur d’authentification vérifie l’existence de l’identité du client, et le cas échéant génère un défi. Le client peut supporter plusieurs méthodes d’authentification. Le défi est choisi selon la méthode d’authentification supportée par le client. Le défi et la réponse sont transmises à l’authentificateur.

Pour les réseaux de mobiles, le client est la carte UICC et les méthodes d’authentifications sont définies dans l’application USIM (et dans l’application ISIM pour l’authentification avec le réseau IMS).

La carte UICC contient une identité IMSI unique et une clé d’authentification Ki. Ces deux informations sont stockées au niveau du serveur d’authentification.

E2E Network Slicing : le découpage du réseau de bout en bout (Partie 3)

Voici la troisième et dernière partie

E2E Network Slicing : le découpage du réseau de bout en bout (Partie 1)

E2E Network Slicing : le découpage du réseau de bout en bout (Partie 2)

IV) La virtualisation de l’accès radio

IV-1) Description des fonctionnalités de la station de base

Le découpage du réseau est une tranche de bout en bout comme le montre la figure 13.

Figure 13 : Le découpage du réseau de bout en bout.

Les fonctionnalités réseaux sont partagées au niveau du cœur de réseau (SNI CN) et de l’accès radioélectrique (SNI RAN). Nous allons maintenant nous intéresser au découpage sur l’infrastructure radioélectrique et à la gestion de ressources.

Une station de base 5G réalise les tâches suivantes :

  • fonction RRM pour la gestion de ressources radioélectriques : Contrôle du support radioélectrique, contrôle d’admission radioélectrique, contrôle de la mobilité pour les mobiles connectés, allocation dynamique des ressources radioélectriques dans le sens montant et descendant (ordonnancement) ;
  • compression d’entêtes IP, chiffrement et intégrité des données ;
  • sélection de la fonction AMF lors de l’attachement du mobile ;
  • routage des données du plan de transport dans un tunnel ;
  • routage des informations de signalisation vers la fonction AMF ;
  • établissement et libération de la connexion ;
  • mesures radioélectriques et configuration du rapport de mesures demandé au mobile ;
  • ordonnancement et transmission des informations de diffusions SIB (System Information Block);
  • marquage des paquets dans le sens montant (étiquettes DSCP) ;
  • gestion des sessions ;
  • support du découpage en tranche de réseaux ;
  • gestion de la QoS et correspondance entre les flux IP provenant du plan de transport UPF en support radioélectrique ;
  • partage de l’accès radioélectrique ;
  • gestion de la double connectivité ;
  • interfonctionnement entre les fonctions 5G-NR et 4G-LTE.

Pour réaliser ces tâches, la station de base s’appuie sur la pile protocolaire présentée sur la figure 14. La station de base 5G peut également se décomposer en deux unités : une unité centralisée gNB-CU et une unité distribuée gNB-DU).

Figure 14 : Présentation de la pile protocolaire de la station de base 5G

La spécification 3GPP propose le découpage du plan de contrôle (RRC) et du plan de trafic IP (SDAP). La signalisation et les données sont gérées par la couche de niveau 2 décomposée en trois sous-couches : PDCP, RLC, MAC et par la couche physique.

La couche physique réalise la modulation et la démodulation de données des signaux sur l’interface radioélectriques.

Le rôle de la sous-couche MAC est de faire :

  • la correspondance entre les canaux logiques et les canaux de transport ;
  • le multiplexage/démultiplexage des unités de données MAC SDU en provenance d’un canal logique ou de plusieurs canaux de transport (TB) ou de plusieurs canaux de transport à destination des canaux logiques ;
  • la correction d’erreur rapide HARQ ;
  • la gestion de priorité entre les mobiles ;
  • la gestion de priorité sur les canaux logiques pour un mobile.

Le rôle de la sous-couche RLC est de faire :

  • le transfert des paquets PDU issu de la couche supérieure ;
  • une numérotation des séquences RLC pour le mode sans acquittement UM et avec acquittement AM;
  • la correction d’erreur ;
  • la segmentation/re-segmentation des données ;
  • la détection d’erreur (pour le mode AM).

Le rôle de la sous-couche PDCP est de faire pour le plan utilisateur :

  • la numérotation de séquence ;
  • la compression et décompression d’entête ;
  • le transfert des données ;
  • la détection des paquets dupliqués et la mise en ordre ;
  • le routage des bearer PDCP PDU dans le cas de la double connectivité ;
  • le chiffrement/déchiffrement et la protection d’intégrité;
  • le rétablissement des données PDCP et la récupération des données pour le mode RLC ;
  • la duplication des paquets PDCP PDU.

Le rôle de la sous-couche SDAP est :

  • la correspondance entre la QoS d’un flux IP et le support radioélectrique ;
  • le marquage de l’identité de la QoS sur les paquets UL.

Le partage de la station de base gNB en deux unités gNB-DU et gNB-CU est spécifié par le standard 3GPP lequel propose différentes options. Toutefois actuellement le gNB reste mono-constructeur même en cas de découpage en deux sous unités gNB-CU et gNB-DU.

Les différentes options sont proposées sur la figure 15 :

Figure 15 : Le découpage des fonctions du gNB

A titre d’exemple, on pourrait imaginer le découpage suivant :

Figure 16 : Un découpage du gNB

Actuellement (standard R.15) l’unité gNB-CU est composée de la sous-couche RRC/SDAP et PDCP, l’unité gNB-DU est composée des sous-couches RLC et MAC et physique. Mais les autres partages de fonctions décrites sur la figure 11 peuvent virtuellement être mise en œuvre.

La couche physique a pour rôle de transférer le signal issu de la couche MAC (le bloc de transport) en un signal RF et inversement récupérer un signal RF pour l’envoyer vers la couche MAC.

La couche physique se compose de plusieurs fonctions :

  • code détecteur d’erreurs CRC ;
  • code correcteur d’erreur et adaptation de débit ;
  • embrouillage ;
  • modulation ;
  • affectation des symboles par sous-couches antennaires ;
  • précodage numérique ;
  • affectation des signaux et canaux sur chaque élément de ressources ;
  • transformée de Fourier Discrète et insertion d’un préfixe cyclique ;
  • chaîne RF (convertisseur CNA, conversion RF, amplification).

Les signal RF est envoyé à l’antenne.

La tête radioélectrique déportée (RRH) correspond à la chaîne RF. Pour la 4G, l’entité eNB se composait de deux parties : BBU et RRH. Cette option est maintenue pour la 5G (option 8) toutefois, le débit du bus série CPRI (Common Public Radio Interface) qui transporte les symboles I/Q est d’autant plus élevé que :

  • la bande de fréquence est importante (cellule principale et secondaire en cas d’agrégation de porteuses) ;
  • le nombre d’antennes est élevé (FD-MIMO ou Massive MIMO).

Pour réduire le débit entre le gNB-DU et la tête radioélectrique déportée, il est également prévu de proposer un découpage au niveau de la couche physique différent (figure 17) :

Figure 17 : Les options de décomposition de la station de base gNB

Le transport des données sur les interfaces optionnelles est normalisé par le protocole eCPRI  (evolved Common Public Radio Interface) et est véhiculé sur une fibre optique.

La gestion des ressources radioélectrique (protocole RRM) est réalisée par la station de base gNB. La gestion des ressources radioélectrique a pour objectif :

  • de gérer le spectre de fréquence : cette fonction décide comment les ressources spectrales sont réparties en porteuses 5G-NR et comment ces porteuses sont allouées aux différents site;
  • de gérer l’interférences entre cellules (mécanisme ICIC). Dans la continuité de la gestion du spectre, le mécanisme ICIC impose une puissance limitée sur un ensemble de sous-porteuses afin d’éviter les interférences avec un point de transmission voisin utilisant les mêmes sous-porteuses ;
  • d’ordonnancer les paquets : cette fonction décide, pour chaque porteuse 5G-NR affectée à une cellule, quelles sont les ressources bloc (RB) disponibles pour transférer les paquets sur chaque bearer radioélectrique établi ;
  • de réaliser les fonctions liées à la prise en charge radioélectrique tels que le contrôle de bearer, le contrôle d’admission radioélectrique, le contrôle de la mobilité (lorsque le mobile est en mode connecté).

L’implémentation logicielle de la partie RRM n’est pas du ressort de la 3GPP, c’est pour cela qu’il n’est pas envisageable d’avoir une unité gNB-CU et gNB-DU de deux équipementiers différents.

IV-2) La virtualisation de la station de base : C-RAN

Le point de départ consiste à respecter le contrat SLA et d’apporter la QoE défini par le contrat. Ce contrat peut concerner la QoS pour un utilisateur. Toutefois, la virtualisation et l’isolation des slices permet à l’opérateur de louer les services de la station de base à des opérateurs virtuels ou à des entreprises.

Pour des entreprises privées, cela revient à mettre en place un DAS et la station de base est uniquement dédiée à l’entreprise.

Pour les opérateurs, il est possible de faire un partage de l’accès radioélectrique (Shared RAN) connecté directement au cœur réseau des différents opérateurs (MOCN : Multi-operator Core Network).

Jusqu’à présent, les stations de base étaient des entités physiques (PNF) installées au niveau de l’antenne. Ainsi, la gestion du spectre (contrôle d’admission, séquencement), la gestion des acquittements (HARQ/ARQ), le chiffrement étaient réalisés localement.

Dans le cas où l’entité est physique (PNF) alors les ressources matérielles de la station de base (CPU/RAM/Carte réseaux) doivent gérer les différents services (eMBB/mMTC pour la 4G).

Le découpage de la station de base en deux unités permet de mieux allouer les ressources matérielles aux fonctions protocolaires de la station de base. Excepté la tête radioélectrique déportée, les fonctionnalités de la station de base gNB-CU et gNB-DU sont toutes virtualisables.

La virtualisation est demandée par le support opérationnel OSS/BSS qui utilise le gabarit NST du slice pour imposer à l’orchestrateur (MANO ou ONAP) de gérer le cycle de vie dans l’instance virtuelle.

L’alliance O-RAN  portée par les opérateurs propose une normalisation (figure 18) sur la gestion du slice RAN. L’orchestrateur dispose d’un contrôleur SDN nommé RIC non-RT (RAN Intelligent Controller non Real Time) permettant de configurer le déploiement, la mise en échelle ou le relâchement de la sous-instance radioélectrique par un découplage du plan de contrôle et du plan utilisateur.

Figure 18 : Le fonctionnement du Cloud-RAN

La virtualisation du RAN est réalisée en suivant le protocole NFV de l’ETSI. Nous n’aborderons pas ici les solutions OpenSource existantes (OPNFV, OpenStack, QEMU, …).

Pour l’alliance O-RAN,

  • Le RIC non-RT a pour objectif le respect du SLA et de la supervision en gérant le déploiement, la mise à l’échelle ou la libération des sous-couches de virtualisations radioélectrique SNI.
  • Le contrôleur RIC near RT gère les ressources radioélectrique (fonctionnalités RRM) en proposant un découpage fonctionnel entre l’unité gNB-CU et les entités gNB-DU.

La configuration des gNB permet de définir la liste des services S-NSSAI supportés par le gNB par une procédure de configuration du paramétrage des stations de base (cf. figure 8). Cette phase de provisionning est gérée au moment de la création du slice radioélectrique (figure 19).

Figure 19 : La configuration des slices supportées par les gNB

Lorsque le gNB s’active, il informe la fonction AMF de l’ensemble des slices supportés avec la localisation TAC correspondante. Si la station de base est connectée à plusieurs fonctions AMF, alors elle transmet l’information à toutes les fonctions AMF. Chaque fonction AMF l’informe en retour des services S-NSSAIs supportés par la fonction AMF.

Au niveau du gNB, le découpage entre le gNB-DU et le gNB-CU est ordonné au niveau du contrôleur RIC-near RT. Un descripteur de slice permet de définir les fonctions gérées au niveau de chaque unité (gNB-CU et gNB-DU).

Une entité gNB peut supporter plusieurs slices. Le découpage entre gNB-CU et le gNB-DU est identique pour chaque slice par contre les fonctions utilisées sur chaque sous-couches peuvent être communes ou spécifiques. Par exemple, il est possible de définir un slice pour les terminaux statiques et de désactiver la fonction handover pour ce slice.

Figure 20 : La mise en place de plusieurs slices au niveau d’un gNB

On définit ainsi le comportement attendu pour chaque sous-couche et lorsque le mobile fera une demande de connexion radioélectrique, le message RRC transmis du mobile à l’entité gNB-CU contiendra l’information S-NSSAI du slice demandé. Ainsi, lors de la connexion radioélectrique, l’entité gNB créera un context UE avec le numéro de slice correspondant (figure 21).

 

Figure 21 : L’identification du slice

IV-3) Exemple de C-RAN

L’objectif de la virtualisation consiste à répartir la charge sur différents serveurs en fonction de la QoE demandée.  Ainsi :

  • Pour les terminaux IoT, la station de base devant couvrir une superficie sur laquelle on peut avoir 1 million d’IoT par km2 (ce chiffre est la limite haute du standard), les ressources matérielles de la station de base peuvent rapidement saturer si, il y a un réveil en cascade des terminaux IoT, ou si plusieurs terminaux sont dans le mode RRC_Inactive, ou … Il est donc recommandé de déporter les fonctions suivantes vers un DataCenter (DC) :
    • contrôle RRC de chaque terminal IoT ;
    • chiffrement/déchiffrement ;
    • segmentation, contrôle d’erreur ARQ ;
    • multiplexage, contrôle d’erreur HARQ.

En contrepartie, le fait de déporter les calculs vers le DataCenter va avoir comme incidence d’augmenter la latence, ce qui n’a aucune importante pour les terminaux IoT HLCom (High Latency Communication). En effet, la QoS pour le service IoT n’est pas la latence mais la problématique est la gestion d’un nombre très élevé de terminaux (mMTC :massive MTC).

  • Pour les smartphones eMBB, la station de base doit offrir des services avec une latence d’environ 10 ms pour le plan de trafic et 100 ms pour le plan de transport. On peut donc envisager un découpage avec l’unité gNB-CU au niveau du point de présence (PoP) sur lequel l’opérateur déploie des lames de serveurs (mini Data Center nommé MEC – Multi-access Edge Computing). Ainsi :
    • l’entité gNB-CU gère la couche RRC/PDCP haute ;
    • l’entité gNB-DU au niveau de la station de base gère les sous-couches PDCP base, RLC, MAC et physique.
  • Pour les communications critiques (URLLC et V2X), afin de réduire la latence, tout le traitement du gNB s’effectue au niveau local (près de l’antenne).

Toutefois, le mobile n’est pris en charge que par une seule paire gNB-CU et gNB-DU, le choix du gNB-CU s’effectue par rapport aux paramétrages radioélectrique du mobile sur le module USIM (PLMN), c’est-à-dire par la sélection d’un PLMN.

La tranche de réseau par PLMN est identifiée par un indicateur de slice Slide ID NSSAI. Les slices gérés par le PLMN sont stockés au niveau du gNB-CU.

L’exemple (figure 22) ci-dessous est extraite de l’article [ferrus] :

Figure 22 : Déploiement 5G-NR

La figure présente 2 PLMN différents, PLMN#A et PLMN#B.

Le PLMN#A est géré par une entité gNB monolithique déployée sur un MEC du PoP #1 puisqu’on est sur une infrastructure légère (LW NFVI)

Le PLMN#B est géré par une unité gNB-CU qui est située sur le DC du PoP #2. L’unité gNB-CU est connectée à deux unités gNB-DU, une située sur le MEC PoP#1 et l’autre sur le MEC #PoP3.

Lorsque le mobile s’allume, il cherche le PLMN correspondant, soit le PLMN#A soit PLMN#B.

On peut supposer que le PLMN#A est dédié pour l’IoT sur une bande de fréquences à 700 MHz (@RF Carrier#1), la zone de couverture est étendue (NR Cell#1). Lorsque le terminal s’allume, il scanne une fréquence basse et cherche le PLMN #A. Une fois synchronisé, il fait une demande de connexion radioélectrique avec le gNB#1.

Le PLMN#B exploite une bande de fréquence @RF Carrier#2 sur deux cellules NR Cell#2 et NR Cell#3. Lorsque le smartphone s’allume, il scanne la bande de fréquences et une fois synchronisée il fait une demande de connexion auprès du gNB-CU. Selon sa position, il fait la demande auprès du gNB-DU du PoP#1 ou du PoP#3.

Conclusion

Le découpage du réseau en tranche est constitué de deux sous instances virtuelles (NSI), une sous-instance au niveau du cœur de réseau et une sous-instance au niveau de l’accès radioélectrique.

Le mobile est enregistré sur une seule fonction AMF mais peut activer plusieurs slice simultanément. Au niveau accès radioélectrique, le mobile est géré par un unique gNB.

La figure 23 est issue d’une documentation NoKia et réprésente le découpage du réseau 5G.

La figure 24 est issu d’une documentation Samsung et réprésente le découpage du réseau, l’orchestration de bout en bout. Ce document reprend donc l’ensemble des fonctionnalités et le découpage du réseau décrit dans cet article.

Figure 23 : Un découpage de réseau de bout en bout [Nokia]

Figure 24: Un découpage de réseau de bout en bout [Samsung]

References :

Liens 3GPP :

3GPP TS 28.530 V16.1.0 : Management and orchestration; Concepts, use cases and requirements

3GPP TS 38.300 : NR; NR and NG-RAN Overall Description; Stage 2, Release 16

  • http://www.3gpp.org/ftp//Specs/archive/38_series/38.300/38300-g10.zip

3GPP TS 23.501 V16.1.0 : System architecture for the 5G System (5GS); Stage 2, Release 16

3GPP TS 29.510 V15.1.0 : 5G System; Network function repository services; Stage 3, Release 15

3GPP TS 29.531 V15.1.0 : 5G System; Network Slice Selection Services; Stage 3, Release 15

3GPP TS 28.500 : Management concept, architecture and requirements for mobile networks that include virtualized network functions, Release 15

3GPP TS 24.501 : Non-Access-Stratum (NAS) protocol  for 5G System (5GS); Stage 3;             (Release 16)

  • http://www.3gpp.org/ftp//Specs/archive/24_series/24.501/24501-g41.zip

3GPP TS 21.915 : Release Description ; Release 15

 

ETSI

Article

[ferrus] R. Ferrús, O. Sallent, J. Pérez-Romero, R. Agustí , « Management of Network Slicing in 5G Radio Access Networks: Functional Framework and Information Models ».

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2015.310_Architectural_comparison.08-2.pdf

Equipementiers

  • Huawei : 5G Network Slicing for Vertical Industries
  • Huawei : 5G Network Slicing for Cross Industry Digitization Position Paper
  • Nokia : Network Slicing in 5GS E2E
  • Samsung

 

https://www.huawei.com/minisite/5g/img/gsa-5g-network-slicing-for-vertical-industries.pdf

http://www-file.huawei.com/-/media/CORPORATE/PDF/white%20paper/5G-Network-Slicing-for-Cross-Industry-Digitization-Position-Paper.pdf

Figure 13 : https://www.5g-ks.org/pdf/Network_Slicing_in_5GS-E2E_View-Nokia.pdf

Figure 23 : https://www.5g-ks.org/pdf/Network_Slicing_in_5GS-E2E_View-Nokia.pdf

Figure 24 : https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-paper/network-slicing/200420_Samsung_Network_Slicing_Final.pdf