ATTENTION : Cet article suit une recommandation et non une spécification. C’est donc seulement une étude qui a pour objectif de préparer l’écriture d’un autre article sur la communication UE-UE par satellite mais qui sera défini par la spécification R.19.
Cet article est écrit suite à la publication d’un essai de communication satellitaire 5G-NTN : Ericsson, Qualcomm et Thales Alenia Space franchissent une étape clé dans la connectivité par satellite : « Parmi les applications potentielles, cette technologie pourrait prendre en charge les appels vocaux de haute qualité et les services de streaming vidéo en temps réel. »
https://www.ericsson.com/fr/press-releases/3/2025/ericsson-qualcomm-thales-achieve-space-connectivity-milestone
L’article décrit ici s’appuie sur la recommandation TR 23.700-29.
Cette solution permet la communication directe entre équipements utilisateurs via satellites sans transit par les réseaux terrestres. Elle répond au problème concernant le support de la communication UE-satellite-UE.
I) Architecture et principes
L’architecture déploie des gNB (stations de base 5G) et des **UPF (User Plane Functions) directement sur les satellites. Les UE peuvent être desservis par le même satellite ou par des satellites différents connectés via des liens inter-satellites (ISL).
Principe fondamental : La signalisation des UE transite vers les réseaux 5GC et IMS au sol, mais le trafic utilisateur entre les deux UE est routé uniquement par les satellites.
Ces deux points sont fondamentaux et nécessite des hypothèses importantes :
Hypothèses principales
– Les deux UE sont servis par le même PLMN (réseau domestique)
– Les deux UE utilisent la même instance SMF ou I/V-SMF
– Le système IMS détermine pendant l’établissement d’appel s’il faut utiliser la communication UE-Satellite-UE
– La passerelle média IMS (IMS AGW) reste au sol, ce qui signifie que le transcodage n’est pas supporté
Sélection intelligente des UPF
Le document décrit un mécanisme d’association de satellites organisés en groupes. Chaque groupe comprend :
– Des satellites avec gNB embarqués
– Un satellite avec UPF embarqué accessible via ISL
– Des DNAI (Data Network Access Identifier) accessibles
Le SMF sélectionne les UL CL/BP/PSA UPF locaux basés sur :
– L’ID du satellite embarquant le gNB
– Les informations d’association de satellites préconfigurées
– Le DNN fourni par l’UE
Gestion de l’itinérance satellite (Section 6.28.2.3)
La procédure I/V-SMF commun au sol traite un cas complexe d’itinérance où UE1 est dans son réseau domestique et UE2 est en itinérance home-routed dans le PLMN de UE1.
Étapes critiques de la procédure :
1. Établissement séparé des sessions PDU : Chaque UE établit sa session avec des UPF terrestres différents (UPFx pour UE1, UPFy pour UE2 en itinérance)
2. Détection de non-service : SMF1 servant UE1 détecte qu’il ne sert pas l’UE pair (UE2) lors de la demande de communication UE-SAT-UE
3. Sélection I-SMF coordonné : Un SMF dédié (I/V-SMF) supportant la communication UE-SAT-UE est sélectionné pour coordonner les deux sessions
4. Insertion UPF satellites : L’I/V-SMF insère UPF1 sur SAT1 pour UE1 et UPF2 sur SAT2 pour UE2
5. Re-sélection V-SMF : Le SMF2 servant UE2 déclenche également la sélection du même I/V-SMF
6. Chemin média optimisé : Le trafic final suit : UE1 ↔ SAT1(gNB1+UPF1) ↔ SAT2(gNB2+UPF2) ↔ UE2
Innovation technique : Cette procédure montre comment maintenir l’optimisation du trafic spatial même dans des scénarios d’itinérance complexes, en utilisant un SMF coordonnateur qui comprend les spécificités satellite.
Gestion des handovers satellite
Quand le satellite de service change, la procédure maintient la communication en :
– Sélectionnant un nouveau UPF sur le satellite cible
– Mettant à jour les chemins de signalisation
– Gérant la libération des ressources source avec un timer de garde pour éviter les pertes de paquets