5G – DSS – Partie 4

suite de l’article 

III) Conclusion

Le partage dynamique de la bande 4G/5G permet d’apporter de la 5G au niveau des cellules 4G sans avoir besoin de recourir au refarming. Les opérateurs planifient néanmoins l’allocation de la bande 4G aux usages 5G dans les années à venir (figure 20).

Figure 20 : L’usage de la bande 4G/5G dans les années à venir

En contrepartie, la méthode DSS complexifie la gestion radioélectrique entre les signaux 4G et les signaux 5G.

La spécification 3GPP propose 3 méthodes (figure 21) :

  • basée sur la sous-trame MBSFN,
  • basée sur le mini-slot ;
  • basée sur l’adaptation de bloc de ressource.

Figure 21 : Les options de déploiement DSS [2]

  1. L’option 1 est basée sur la sous-trame MBSFN. Les 12 symboles de la sous-trame est dédiée aux communication 5G. Aucun trafic 4G n’est possible sur cette sous-trame. L’option 1 permet d’utiliser sans contrainte les 12 symboles de la sous-trame pour émettre en 5G quelle que soit la numérologie µ.
  2. L’option 2 utilise la notion de mini-slot standardisée pour les transmission 5G. Un mini-slot exploite 2, 4 ou 7 symboles OFDM. La transmission mini-slot a été spécifiée par la 3GPP pour les cas d’usage URLLC en proposant de transmettre à tout moment pour réduire la latence. Pour ne pas interférer avec les signaux CRS, les mini-slot sont transmis lorsqu’il n’y pas de signaux de référence à émettre.
  3. L’option 3 est généralement celle déployée par les opérateurs. Cette option s’appuie sur le procédé de poinçonnage (puncturing). La station de base peut du trafic 5G sur l’ensemble du canal de trafic PDSCH sauf sur les éléments de ressource utilisée pour la transmission des signaux de référence. L’allocation de ressource peut être réalisée par élément de ressource ou par ressource bloc. Par élément de ressource, seul l’élément de ressource RE (Resource Element = 1 symbole) contenant le signal CRS est exclu. Dans le cas d’adaptation par bloc de ressource RB (Resource Bloc), c’est le RB en entier qui est exclu pour la transmission 5G.

L’efficacité spectrale est meilleure dans le cas de l’adaptation par élément de ressource (RE) néanmoins elle n’est possible que lorsque la station de base 5G fonctionne avec un écart entre sous-porteuse de 15 kHz comme dans le cas de la station de base 4G.

Si l’espacement entre sous-porteuses 5G est de 30 kHz, alors seul le procédé de poinçonnage par bloc est possible.

La transmission par mini-slot était initialement prévue pour ne pas faire de poinçonnage.

Parmi ces 3 options, la 3ème option est la plus efficace spectralement mais elle est limitée au cas ou l’espacement entre sous-porteuses 5G est de 15 kHz. Lorsque l’espacement est de 30 kHz, l’option 1 ou 2 peuvent être utilisées avec une préférence pour l’option 2. Celle-ci se révèle moins efficace comme le montre la table 2.

Table 2 : L’adaptation de débit RE (par slot) /RB (par mini-slot)

Pour le lien montant, le terminal 4G utilise la méthode SC-FDMA pour réduire la consommation énergétique. La spécification 4G a imposé un décalage fréquentiel de 7,5 kHz par rapport au signal descendant. Pour la 5G, le terminal utilise soit la méthode SC-FDMA soit la méthode OFDMA. Ce décalage de fréquence ne permet plus d’assurer l’orthogonalité entre les sous-porteuses 4G et 5G. Pour pallier à ce décalage, la 5G DSS sur le lien montant est décalé de 7,5 kHz afin d’être aligné sur la transmission montante LTE.

Figure 22 : L’alignement des fréquences 4G/5G sur le lien UL

La table 3 résume les caractéristiques DSS avec les différentes versions de la spécification 3GPP

Table 3 : Les caractéristiques DSS

Références

[1] https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-papers/0122_dynamic-spectrum-sharing/Dynamic-Spectrum-Sharing-Technical-White-Paper-Public.pdf

[2] https://www.sharetechnote.com/html/Handbook_LTE_MBSFN.html

[3]https://newsletter.mediatek.com/hubfs/mediatek5gprogress/Dynamic-Spectrum-Sharing-WhitePaper-PDFDSSWP-031320.pdf

[4] https://www.keysight.com/fr/en/assets/7120-1249/application-notes/Dynamic-Spectrum-Sharing-DSS-Functional-and-Performance-Verification-with-Keysight-Nemo-Tools.pdf?success=true

5G – DSS – Partie 1

1. Introduction

Le déploiement de la 5G actuellement en cours par les opérateurs s’effectue soit sur la nouvelle bande de 3,5 GHz, soit sur une bande 4G à 700 MHz ou 2100 MHz. Seule l’exploitation de la nouvelle bande à 3,5 GHZ permet d’augmenter les débits de transmission. L’utilisation de la bande à 700 MHz ou 2100 MHz permet d’émettre un signal 5G en exploitant une partie de la bande 4G. Ainsi le débit obtenu en 5G s’obtient en réduisant en contrepartie le débit 4G (dans un ordre de grandeur assez proche).

Dans ce cas de déploiement de la 5G sur une bande actuellement utilisée par la 4G, il ne s’agit pas de refarming car on ne ré-affecte pas le spectre 4G pour la 5G mais la station de base procède à la gestion dynamique de spectre.

Figure 1 : La différence entre re-farming et DSS [1]

Le re-farming n’est pas possible car d’une part dans le fonctionnement de la 5G-NSA il est nécessaire de conserver la connexion radioélectrique 4G mais en plus, le nombre d’utilisateurs 4G est trop élevé pour basculer une partie du spectre 4G vers la 5G. Il faut ainsi attendre plusieurs années avant d’envisager du re-farming (cet argument est valable quelle que soit la technologie).

Figure 2 : Le déploiement de la 5G et les bandes allouées

Les opérateurs déploient donc une autre technologie, nommée DSS (Dynamic Spectrum Sharing) qui consiste à partager en temps réel les allocations de ressources radioélectriques entre une allocation 4G-LTE et une allocation 5G-NR sans impacter les utilisateurs 4G, c’est-à-dire en permettant aux terminaux 4G de pouvoir toujours exploiter la bande de fréquence LTE.

La technologie DSS est possible car la 5G se repose sur le LTE (beaucoup de similitudes : OFDM avec un espacement entre sous-porteuses identiques ou multiples de 2, précodage identique, modulation identique, …) toutefois cela impose le respect des contraintes suivantes :

  • pas d’interférence sur les signaux de références 4G : CRS et CSI-RS ;
  • pas d’interférence sur le canal de contrôle 4G-PDCCH ;
  • séparation des signaux de synchronisation PSS/SSS en 4G et du signal de synchronisation SSB en 5G. L’un et l’autre doivent être transmis sans interférence.

L’allocation des ressources 4G-LTE est gérée toute les 1 ms, les informations de contrôles 4G-PDCCH sont allouées sur toute la bande et l’allocation des signaux de références CRS et CSI-RS est assignée par un paramétrage statique qui dépend du nombre de port d’antennes supporté par la station de base 4G eNB.

Les signaux de références CRS sont transmis sur chaque bloc de ressources (12 sous porteuses) à raison de (figure 2) :

  • 4 éléments de ressources (RE) sur un slot (0,5 ms en 4G) pour une antenne ;
  • 8 RE sur un slot (0,5 ms en 4G) pour deux antennes ;
  • 12 RE sur un slot pour quatre antennes.

Pour plus d’information, se référer à l’article http://blogs.univ-poitiers.fr/f-launay/2021/02/18/cours-2-niveau-master-chap-1-part-3/

Figure 3 : La position des éléments de ressources 4G-CRS

Les signaux de références 4G-CRS permettent au mobile de mesurer le niveau de puissance de chaque cellule (serveuse et voisines) et d’en déduire ainsi la qualité du lien radioélectrique (RSRP, RSRQ). Pour ne pas fausser les mesures, il est proscrit de transmettre des données sur le même élément de ressource (allocation dans le domaine fréquentiel – sous porteuse – et temporel –symbole-) qu’un signal de référence. La configuration des signaux de références CRS dépendent du numéro PCI (Physical Cell Identifier) de la cellule et du nombre de ports d’antennes (permettant de faire du MIMO). L’ingénierie radioélectrique va s’assurer que les stations de base voisine (PCI) respectent cette contrainte.

Les signaux de référence 4G-CRS utilise 4,76% des ressources 4G-LTE pour un seul port d’antenne et atteint 14,29% de ressources LTE pour 4 ports d’antennes. Au-delà de 4 antennes, le signal de référence émis est le CSI-RS qui nécessite moins de ressources.

Le canal de contrôle PDCCH est transmis sur toute la bande 4G-LTE dans le domaine fréquentiel et sur un, deux ou trois symboles dans le domaine temporel. Le nombre de symboles du canal PDCCH est défini par la station de base eNB en fonction du trafic. Le mobile prend connaissance du nombre de symboles de la zone du canal de contrôle PDCCH à partir de l’information portée par le canal PCFICH (figure 4).

L’allocation des ressources pour la 5G-NR est plus flexible, les informations de contrôle 5G-PDCCH sont transmises dans des bloc CORESET (COntrol REsource SET). Toutefois, les signaux de référence 5G-NR ne doivent pas non plus être interférés par la transmission 4G.

Figure 4 : L’allocation des canaux sur le réseau LTE

Enfin, les signaux de synchronisation 4G PSS/SSS sont transmis avec une périodicité de 5 ms en milieu de bande et le canal de diffusion 4G PBCH est transmis en milieu de bande toutes les 10 ms.

Pour qu’un terminal mobile 4G ne soit pas perturbé par la méthode DSS, il faut obligatoirement respecter les contraintes précédentes : le partage de la bande radioélectrique 4G/5G ne peut se faire simultanément et sur les mêmes fréquences que les signaux 4G : CRS, PSS, SSS, PBCH et PDCCH.

La méthode DSS permet donc d’utiliser des éléments de ressources 4G-LTE sans interférer avec les canaux de contrôles et les signaux de références 4G pour transmettre un signal 5G sur les ressources non-utilisées. Toutefois, les ressources 4G non-exploitées doivent permettre la transmission des canaux de contrôle, du bloc de synchronisation 5G-SSB et des signaux de référence 5G.

Cours 2 – Niveau Master (Chap 1 – Part 3)

Les Modes de transmission

2.3 LTE et MIMO

2.3.1 Chaîne de transmission dans le sens descendant.

La couche physique du LTE se décompose en sous-bloc afin de répartir les flux d’informations issues de la couche MAC en bloc de transport jusqu’au mappage OFDM transmis sur chaque antenne.

Le synoptique de la chaine de transmission est décrite à la figure 2.10.

Figure 2.10. Chaîne de transmission MIMO

Afin de détailler le rôle de la chaîne, nous allons séparer l’étude en trois sous-parties :

  • Description de la chaîne entre les mots de code (codeword) aux couches spatiales
  • Description de la matrice de Précodage et association avec les modes de transmissions
  • Affectation aux ressources spectrales : Association du signal de référence au port d’antenne.

2.3.1.1 Chaîne de transmission du mot de code aux couches spatiales

A chaque TTI, la couche MAC délivre un ou deux bloc de transport (de taille TBS)

Un code CRC (cyclic redundancy check) de 24 bits est rajouté au transport bloc. L’objectif est de détecter une erreur de transmission. Le code CRC est le reste de la division euclidienne du transport block par le générateur  G exprimé par l’équation suivante.

La séquence binaire est ensuite segmentée en bloc de codage. Un CRC de 8, 16 ou 24 bits est rajouté à chaque bloc de codage avant d’être codé par un turbo-code ou un code convolutif. Le Turbo code utilise deux entrelaceurs dont la taille minimum est de 40 bits et la taille maximum est de 6144 bits (la norme propose 188 tailles différentes). Les codes bloc ont donc une taille comprise entre 40 bits et 6144 bits.

Le turbo code a un rendement de 1/3, le signal est ensuite poinçonné ou répété afin d’adapter la taille du flux de bits de sortie au débit désiré.

Le flux de bits ainsi obtenu se nomme codeword ou mot de code.

Figure 2.11. Couche Physique LTE

Le mot de code est ensuite embrouillé par une séquence pseudo-aléatoire de Gold (scrambling) et modulé suivant la modulation QAM définie par la couche MAC. La séquence de Gold est calculée en fonction de l’identité de la cellule, et avec l’identifiant RNTI de l’UE pour les canaux PDSCH, PUSCH et PUCCH. Ainsi, le récepteur peut séparer les mots de code provenant de cellules différentes dans le sens descendant et les mots de code provenant d’UE différent dans le sens montant et d’un même UE dans le cadre du MIMO.

Les mots de blocs embrouillés et modulé sont issus de la segmentation du bloc de transport ou des blocs de transport et constituent les sources d’entrées du bloc MIMO. On numérote par 0 et 1 les mots de code issus des blocs de transport.

En R.8, dans le sens descendant, les mots de code peuvent être transmis sur 1, 2 ou 4 antennes physiques. Dans le cas d’un retour d’information, l’eNb utilise l’information du rang de la matrice de propagation (RI) pour définir le nombre de couches spatiales utilisable par l’UE. Le nombre de couches spatiales est inférieur ou égale au RI. Le bloc Layer Mapper a pour objectif d’associer le ou les mots de codes au nombre de couches spatiales. Le nombre de couche spatiale est donc de 1, 2 ou 4 pour la R.8 et jusqu’à 8 antennes à partir de la R.10.

Figure 2.11. Layer Mapper

La figure 2.7 est un exemple de mise en correspondance de deux codewords vers 4 couches spatiales. Cependant, les différentes combinaisons résumées dans la table 2.7 existent.

Table 2.7. Associations entre mots de code et couches spatiales pour le sens descendant

SM : Spatial Multiplexing et DT : Diversity Transmission

2.3.1.2 Les matrices de précodage et les modes de transmission en DL

Après avoir disposé les mots de codes sur les différentes couches spatiales, chaque couche spatiale est précodée par des coefficients complexes en fonction du mode de transmission (TM) et transmis vers des ports d’antennes. Nous reviendrons sur la notion de port d’antenne ultérieurement et sur l’association entre les ports d’antennes et les antennes physiques.

Le traitement du signal consiste à convertir L couches spatiales vers N ports d’antennes en multipliant les symboles d’entrées par des coefficients complexes (matrice de précodage de taille N x L).

Le précodage s’appuie sur une matrice extraite d’un livre de code (codebook). Le livre de code est connu par l’UE et l’eNb et dans le cas de l’estimation du CSI avec retour vers l’émetteur, l’UE informe l’eNb de la matrice de codage la plus adaptée parmi la liste définie dans le livre de code. L’UE renvoie le numéro de la ligne correspondant à la matrice et cette information est portée par le PMI.

Dans le sens descendant, 10 modes de transmission ont été définis :

  • TM1 à TM7 ont été définis dans la R.8.
  • TM8 a été défini dans la R.9
  • TM9 a été défini dans la R.10
  • TM10 a été défini dans la R.11
  • TM9 a évolué dans la R.13 pour gérer les UE dédiés aux objets connectés.

TM1 : Single Transmission antenna.

Dans le cas de la transmission SISO, une seule antenne est utilisée à l’émission et une seule en réception.

TM2 : Transmit Diversity

La diversité de transmission utilise :

  • pour deux antennes d’émission : le codage SFBC (Space Frequency Block Coding). Il s’agit du codage Alamouti exploité en fréquence et non en temps (ce qui le différencie du STBC). La figure 2.4 illustre le code Alamouti en temps, on retranscrit le code dans le domaine fréquentiel :

En écrivant :

Alors, on obtient :

La matrice de précodage est donc (cf. section 6.3.4.3 3GPP TS 36.211) :

  • Pour 4 antennes  d’émission : le codage FSTD (Frequency Switched Transmit Diversity) : 4 symboles sont découpés en 2 paires, chaque paire est transmise sur deux antennes comme le SFBC sur des RB différents (frequency switched). Chaque ligne de la matrice correspond un port d’antenne :

est le code en temporel. Lorsqu’on retranscrit en fréquentielle, on obtient :

Se référer à la section 6.3.4.3 3GPP TS 36.211

Les canaux PDSCH, PDCCH et PBCH utilisent la diversité de transmission.

TM 3 – Open loop spatial multiplexing with CDD (Cyclic Delay Diversity)

Le multiplexage spatial en boucle ouverte se base sur le choix d’une matrice de précodage au niveau de l’émetteur sans connaissance de l’estimation du canal. En général, ce mode est choisi lorsque l’UE se déplace rapidement (scénario de haute mobilité) et le temps de calcul de l’estimation du canal (PMI) est supérieur au temps de cohérence du canal. Le RI est néanmoins transmis à l’eNb mais pas le PMI.

Ce mode supporte le multiplexage spatial de 2 ou 4 couches transmises simultanément sur 2 ou 4 antennes. La matrice de précodage utilisée en émission est connue par le récepteur et se calcule par le produit de trois matrices : Une matrice  de taille N x L et deux matrices carrées D et U de taille L x L : D.U

La matrice W distribue le signal provenant de chaque couche vers les P ports d’antennes, la matrice D permet d’avoir un décalage alors que la matrice U distribue l’énergie sur chacun des ports d’antennes.

Avec :

Table 2.8. Bibliothèque de matrices de précodage pour deux ports d’antennes

Afin de connaitre la position des colonnes constituant la matrice de précodage W, on se réfère à la spécification TS 36.211 Table 6.3.4.2.3-2 (cf. table 2.9).

Table 2. 9. Bibliothèque Tableau de codes pour la transmission sur 4 antennes en DL

Pour l’index 0 et pour deux couches spatiales, la matrice de précodage est constituée de la colonne 1 et de la colonne 4 de la matrice w0, laquelle se calcule à partir du vecteur u0.

Pour le mode de transmission TM3, 4 antennes, l’index est 12, 13, 14 et 15.

Les matrices D et U sont définies dans la spécification 3GPP TS 36.211 (Table 6.3.4.2.2-1) :

Table 2.10. Matrice de précodage : Matrices U et D

CDD représente la diversité temporelle : Un bloc est retransmis avec un retard spécifique constant représenté par U

TM3 : Transmit Diversity

Le TM3 nécessite uniquement l’information RI. Le PMI n’est pas transmis. Dans le cas où le rang de la matrice est unitaire, le mode TM3 est utilisé pour la diversité d’émission

Dans ce cas, la matrice de précodage est identique à la matrice de précodage du mode TM2

TM 4 – Multiplexage spatiale en boucle fermée (CSI transmis à l’émetteur)

Ce mode supporte le multiplexage spatiale SU-MIMO jusqu’à 4 couches spatiales multiplexées jusqu’à 4 antennes. L’estimation du CSI est réalisée à partir du CRS ce qui signifie que le retour de l’UE n’exploite pas de pilote dédié à l’UE.

La matrice de précodage s’appuie

  • Sur la table xx.8 pour un utilisateur transmettant un ou deux couches spatiales sur 2 ports d’antennes.
  • Sur la table xx.9 pour un utilisateur transmettant une à 4 couches spatiales sur 4 ports d’antennes.

Dans le TM4, les mêmes ressources temps fréquentielles sur les différentes antennes sont transmises vers un seul UE

TM 5 – MU-MIMO

Ce mode est similaire au TM4, il supporte la fonction de multiplexage spatial en boucle fermée de deux utilisateurs (MIMO 2×2) ou de 4 utilisateurs (MIMO 4×4). La matrice de précodage est extraite à partir des mêmes tables.

Dans le TM5, les ressources temps fréquentielles sur les différentes antennes sont transmises vers plusieurs UE

TM6 : Multiplexage spatial en boule fermé en utilisant qu’une seule couche de transmission.

Ce mode est un cas particulier du TM4 pour lequel le rang de la matrice (RI) est 1. L’UE estime le canal et retourne l’index PMI de la matrice de précodage la plus adaptée.

Dans le cas de deux antennes, la matrice de précodage est définie par la table xx.8 (1ère colonne) et par la table xx.9 (1ère colonne) dans le cas de 4 antennes.

TM7 : Faisceau de voie (Beamforming)

Le mode TM7 peut être vu comme le mode TM6 en boucle ouverte. Le faisceau de voie est dédié vers un UE, l’estimation du canal s’appuie de la part de l’UE sur le signal de reference UE-specific RS. Ainsi, les données et l’UE-RS sont précodés par la même matrice.

TM8 : Faisceau de voie sur deux couches

La R.8 a spécifié le beamforming sur une seule couche (TM7). La R.9 a specifié le beam-forming sur 2 couches. Ainsi, le TM8 permet de combiné le beamforming avec un multiplexage spatial pour un ou plusieurs utilisateurs. L’utilisation de deux couches permet également de faire du SU-MIMO ou du MU-MIMO.

TM9 : Faisceau de voie sur deux couches

La R.10 a spécifié le TM.9 pour étendre les configurations du MIMO sur 8 antennes. Ainsi, le SU-MIMO et le MU-MIMO sont définies dans le TM9 (comme une extension du TM4 et du TM8)

Pour pouvoir exploiter 4 antennes supplémentaires, la R.10 propose 8 signaux de références nommés CSI-RS et de nouvelles matrices de précodage calculées à partir des mots de codes existants : W=W1W2  ou :

  • W1 est une matrice de précodage diagonale large bande permettant de définir la sélection de voies
  • W2 change la phase du signal sur chaque polarisation de l’antenne

TM 10

Le TM10 est similaire au TM9 mais les antennes utilisées peuvent être sur des eNb différents. Le TM10 supporte la technologie COMP

xx.3.1.3 Les matrices de précodage et les modes de transmission en UL

La R.8 et la R.9 ne spécifient pas la possibilité de faire du MIMO sur le sens montant.

A partir de la R.10, les UE supportent le MIMO jusqu’à 4 couches, il n’existe donc que deux modes de transmission en Uplink :

TM1 : SISO

TM2 : Closed loop spatial Multiplexing

2.3.2 Les mappage sur les éléments de ressources

Le dernier bloc de la chaîne de transmission correspond à l’association entre les ports d’antennes et les antennes physiques.

Les ports d’antennes sont des entités logiques qui se définissent par les signaux de références qu’ils transportent. La table xx.11 fait l’association du port d’antenne et du signal de référence.

Table 2. 11. Association Signaux de références et port d’antenne pour le DL

Signaux de références CRS

Dans le chapitre sur la structure de la trame radio LTE, nous avons vu que les signaux de références CRS sont insérés dans chaque bloc de ressource (RB) émis par la station de base. L’UE doit estimer toute la bande du canal à partir de la connaissance du CRS et même en cas de forte mobilité (120 km/h à 250 km/h).

Les signaux de références CRS sont insérés dans tous les RB de la bande avec un motif répétitif.

Pour un préfixe cyclique normal, le mappage est effectué sur le premier et cinquième symbole OFDM de chaque slot pour les ports d’antennes 0 et 1 et sur le deuxième symbole OFDM pour les ports d’antennes 2 et 3.

Au niveau fréquentiel, les CRS sont espacés de 6 sous porteuses sur chaque port d’antenne et peut prendre une  position parmi les 6 positions possibles. La position en fréquence du CRS dépend de l’identité physique PCI de la cellule.

De plus, les éléments de ressource utilisés pour le port d’antenne p0 ne doivent pas être utilisés pour le port d’antenne p1, et vice versa pour éviter les interférences entre antenne.

Ainsi, la figure 2.13 présente le mapping dans le cas du préfixe normal (7 symboles par slot) pour une, deux et 4 antennes

Figure 2. 13. Mappage des CRS dans les ports d’antennes

L’allocation de ressources des données transmises est signalée dans le canal physique PDCCH par l’information         .

La table 2.12 propose une synthèse entre le TM et les ports d’antennes.

Table 2. 12. Correspondance entre le TM et les ports d’antennes