Evolution de la pile protocolaire LTE vers NR (5/5)

La couche SDAP (Service Data Adaptation Protocol)

La couche SDAP a pour rôle de définir la qualité de service à mettre en œuvre pour chaque support de données radios DRB (Data Radio Bearer).

La couche SDAP fait la correspondance entre la QoS de chaque flux d’une session PDU (session de données entre la station de base et le cœur de réseau) et la gestion de la QoS au niveau du DRB. Une entité SDAP gère autant de DRB qu’il y a de QoS différentes au niveau de la session PDU.

Deux sessions PDU différentes sont gérées par deux entités SDAP et même si deux flux de chaque session ont la même QoS, la station de base gère deux DRB différents, un par entité SDAP.

La QoS du flux est identifiée par l’identifiant QFI (QoS Flow Identifier) de 6 bits, ce qui limite à 64 QFI par session PDU.

Figure 1 : La gestion de la QoS et le gabarit de filtres (TFT) [1]

On parle de QoS réflective lorsque la couche SDAP rajoute l’identifiant QFI sur le lien montant. Ceci permet d’appliquer la même QoS au niveau du cœur de réseau pour le flux montant que la QoS appliquée au niveau du flux descendant. Mais, l’entité SDAP peut être configurée en mode transparent, l’absence d’en-tête SDAP ne permet plus d’ajouter l’identifiant QFI. Cela correspond au DRB UL par défaut.

La configuration du DRB est réalisée par un message RRC, la QoS est soit indiquée dans la configuration du message ou récupérée au niveau de l’identifiant QFI du paquet descendant (QoS réflective). Pour que la couche SDAP de l’UE puisse mettre en oeuvre la QoS réflective, la station de base positionne le bit RDI (Reflective QoS Flow ti DRB mapping Indication) à 1 [2]. Quand le bit RDI=1, l’UE met à jour la table de correspondance QFI -> DRB pour le lien montant.

L’identifiant QFI est standardisé et correspond à un profil de QoS. Au niveau de la station de base, le profil de QoS permet de définir comment traiter le trafic au niveau du DRB.

La couche SDAP est également configurée par la signalisation RRC pour chaque DRB.

Conclusion

La session PDU permet de connecter le terminal vers un réseau PDN, ce réseau est susceptible d’offrir plusieurs services avec des flux de QoS différentes.

La connexion radio est assurée par la station de base qui contrôle les ressources radios. Les différentes couches ont pour rôle d’apporter un service de transfert de données sécurisés en respectant la QoS établie avec le coeur de réseau.

Figure 2 : Les couches protocolaires de l’interface radio

[1] https://www.sharetechnote.com/html/5G/5G_QoS.html

[2]  TS 137 324 – V15.1.0 – LTE; 5G

[3] https://www.techplayon.com/5g-nr-sdap-service-data-adaption-protocol/

 

Livre 5G NR – Chapitre 1 Architecture Fonctionnelle

Le réseau NG-RAN : L’architecture fonctionnelle

extrait du livre : NG-RAN et 5G NR (sortie 19 octobre 2021)

L’objectif de cet ouvrage est de présenter de manière synthétique le déploiement de la 5G-NSA et de la 5G-SA.

Le chapitre 1 présente l’architecture de déploiement 5G-NSA et 5G-SA. L’ouvrage décrit les entités de l’accès radioélectrique et les fonctions du cœur de réseau 5G-SA en présentant les fonctions supportées par l’accès radioélectrique et le cœur de réseau 5GC

Extrait
1.2.1. Le réseau d’accès radioélectrique NG-RAN

Le réseau d’accès NG-RAN fournit à la fois une interface radioélectrique LTE et une interface radioélectrique 5G-NR.

Un nœud NG-RAN est :

  • une station de base 5G (gNB) qui fournit les services du plan de contrôle et la transmission des données du plan utilisateur à travers l’interface radioélectrique 5G-NR;
  • une station de base 4G évoluée (ng-eNB) fournissant des services du plan de contrôle et la transmission des données du plan utilisateur vers les mobiles via l’interface radioélectrique LTE.

Le nœud NG-RAN est responsable de la gestion des ressources radioélectriques, du contrôle de l’établissement du plan utilisateur et la gestion de la mobilité en cours de session (handover). Le mobile se connecte à l’un des nœuds radioélectriques.

Le nœud NG-RAN transfère les données de trafic provenant du mobile vers la fonction UPF, et celles provenant de la fonction UPF vers le mobile.

Lorsque le nœud NG-RAN reçoit des données de la part du mobile ou de la part de la fonction UPF, elle se réfère à l’identifiant QFI (QoS Flow Identifier) pour la mise en œuvre du mécanisme d’ordonnancement des données.

Le nœud NG-RAN peut effectuer pour les données sortantes, à destination de la fonction UPF, le marquage du champ DSCP (DiffServ Code Point) des paquets IP (Internet Protocol) en fonction de l’identifiant QFI affecté au flux.

Le nœud NG-RAN effectue la compression, le chiffrement des données de trafic et optionnellement le contrôle d’intégrité des données avec le mobile sur l’interface radioélectrique.

Le nœud NG-RAN effectue le chiffrement et le contrôle d’intégrité des données de signalisation échangées avec le mobile sur l’interface radioélectrique.

Le nœud NG-RAN effectue la sélection de la fonction AMF du cœur de réseau sur laquelle s’enregistre le mobile UE.

Le nœud NG-RAN traite la demande de paging émise par la fonction AMF pour sa diffusion dans la cellule. La cellule est une zone de couverture radioélectrique du nœud NG-RAN.

Le nœud NG-RAN diffuse également dans la cellule des informations systèmes contenant les paramètres de l’interface radioélectrique.

Afin de gérer les services d’un mobile, le nœud NG-RAN conserve un bloc d’information UE Context relatif au mobile. Les informations sauvegardées par le nœud radioélectrique dépendent de l’état du mobile. Le mobile est soit à l’état RRC connecté (RRC_CONNECTED), soit à l’état RRC inactif (RRC_INACTIVE) soit à l’état RRC de veille (RRC_IDLE).

A l’état de veille, la station de base n’a pas connaissance de la présence des mobiles qui sont à l’écoute des informations diffusées par le nœud radioélectrique. Concernant les mobiles à l’état RRC_IDLE, il n’y a pas de contexte UE au niveau du nœud radioélectrique.

Lorsque le mobile est à l’état radioélectrique connecté RRC_CONNECTED ou à l’état RRC_INACTIVE, l’identifiant radioélectrique du mobile est connu par le nœud respectivement via l’identifiant C-RNTI ou I-RNTI (Connected/Inactive Radio Network Temporary Identifier). Un bloc d’information (le contexte du mobile UE) est rattaché à l’identifiant radioélectrique RNTI. Le contexte est enregistré au niveau du nœud NG-RAN qui gère le mobile (nœud source) et il est transmis au nœud cible en cas de handover. Le contexte UE est également créé au niveau du nœud maitre et du nœud secondaire en cas de double connectivité.

Lorsqu’un mobile est en mode connecté, le nœud NG-RAN utilise les mesures effectuées par le mobile pour décider du déclenchement d’un changement de nœud en cours de session (handover), pour activer ou désactiver des cellules secondaires.

réf : https://www.amazon.fr/dp/B09BLKD3D5/ref=dp_kinw_strp_1