La transmission PUR (IoT – EPC/5GS)

Cet article présente une évolution du standard R.15 pour une transmission de données montante (UPLINK) dans le cas d’une transmission de type machine MTC et pour un terminal IoT 4G.

La transmission PUR s’effectue sur une interface 4G entre deux entités qui supportent cette transmission, c’est-à-dire soit entre un UE et une eNB ou une ng-eNB.

Le cœur de réseau peut être un cœur de réseau 4 (EPC) ou un cœur de réseau 5G (5GS).

Sur un cœur de réseau 4G, l’état RRC du mobile est soit en veille (RRC_IDLE), soit en mode connecté (RRC_CONNECTED). Pour la procédure de transmission PUR, l’état du mobile est obligatoire en veille (RRC_IDLE).

En mode de veille, le terminal écoute les informations émises par la station de base. Pour transmettre des données sur des ressources tempo-fréquentielles dédiées, le smartphone doit passer en mode connecté.

La procédure d’accès aléatoire permet de passer de l’état de veille à l’état connecté, ce qui nécessite un échange de 4 messages (dont 2 messages RRC) entre le mobile et la station de base.

La transmission PUR permet de réaliser une transmission UPLINK lorsque le terminal est à l’état RRC_IDLE sans avoir besoin de réaliser de procédure d’accès aléatoire puisque le terminal est pré-configuré pour une transmission montante, c’est à dire que le terminal dispose déjà des informations sur les ressources tempo-fréquentielles UPLINK à utiliser pour transmettre ses données à la station de base.

La configuration PUR est transmise par la station de base au terminal UE lorsque celui-ci en fait la demande et à l’état RRC_CONNECTED. Cela ne peut s’appliquer que dans la cellule ou la demande a été faite. La configuration est transmise sous condition de disposer des droits (information d’inscription ou de politique local).

Figure 1 : Pré-configuration du terminal par la station de base

Le terminal UE indique à la station de base qu’il souhaite obtenir une préconfiguration PUR par la requête PURConfigurationRequest. Cette requête demande les informations suivantes :

  • Nombre d’occurrences
  • Périodicité (par fenêtre temporelle de 10,24 secondes)
  • La taille du bloc de données TBS
  • Time offset (TA)

La station de base transmet la configuration PUR au mobile lors de la libération de la connexion radioélectrique afin que le mobile soit à l’état RRC_IDLE.

Le terminal peut transmettre ses données lors d’une occurrence configurée, la station de base étant en écoute de l’éventuel message émis par le terminal. La pré-configuration revient donc à réserver une ressource tempo-fréquentielle pour permettre au terminal d’émettre ses données sur un canal radio dédiée.  Afin d’éviter de conserver cette ressource sur une durée trop longue, un nombre d’occurrence et de périodicité définie la durée de validité de la transmission PUR

La transmission PUR est déclenchée quand les couches supérieures demande l’établissement ou la reprise de la connexion RRC. Une fois le paquet émis, la configuration PUR est supprimée. Le terminal ne pourra donc pas re-transmettre tant qu’il n’aura pas une autre pré-configuration.

En mode de veille, le terminal UE peut transmettre les données selon :

  • L’optimisation du plan de contrôle CIoT EPS/5GS Optimization via la requête RRCEarlyDataRequest (Figure 2);
    • La station de base peut à son tour transmettre des données via la requête RRCEarlyDataComplete sur les ressources tempo-fréquentielles proposées dans la configuration PUR. Par contre, si la taille des données est supérieure à la taille du TBS, le mobile enverra la requête RRCConnectionRequest à la place (fall back to the legacy RRC Connection establishment procedure, a new C-RNTI can be assigned)
    • S’il n’y a pas de données, la station de base acquitte la requête PUR par une réponse HARQ et éventuellement des informations de commandes TA (message DCI).
  • L’optimisation du plan de trafic CIoT EPS/5GS Optimization via la requête RRCConnectionResumeRequest (Figure 3)

Figure 2 : La transmission PUR avec l’optimisation du plan de contrôle

Figure 2 : La transmission PUR avec l’optimisation du plan de contrôleFigure 3 : La transmission PUR avec l’optimisation du plan de trafic

SDT – Small Data Transmission (3ème)

Procédure d’accès aléatoire EDT/RA-SDT

La spécification R.15 propose une évolution de la procédure d’accès aléatoire nommée EDT Early Data Transmission. En cours de procédure d’accès aléatoire, le mobile UE peut transmettre des données dans le message 3 dont la taille est comprise entre 328 et 1000 bits et le message 4 est utilisé pour la transmission descendante [4]. La taille TBS (Transport Block Size) est toutefois imposée par l’accès radioélectrique RAN dans un message 2 RAR.

La transmission des données s’effectuant pendant la phase d’accès aléatoire, le mobile est soit à l’état RRC_IDLE soit à l’état RRC_INACTIVE, mais il n’est pas encore passé à l’état RRC_CONNECTED.

Deux optimisations pour la transmission EDT sont proposées :

  • CP-EDT : Control Plane EDT lorsque le mobile est à l’état RRC_IDLE
  • UP-EDT : User Plane EDT lorsque le mobile est à l’état RRC_CONNECTED

Cela signifie d’une part que les clés de sécurités sont différentes sur le chiffrement des messages (et sur l’authentification uniquement pour le mode CP) et que le tunnel est établi via un message NAS (eNB vers MME dans le cas CP-EDT) alors que les données sont transmises vers le SGW dans le cas de la transmission UP-EDT pour transmettre des données après la procédure d’accès aléatoire (mode connecté).

La procédure MO-EDT (Mobile Originating EDT) permet au mobile UE de transmettre des données lorsque la couche haute demande l’établissement d’une connexion RRC ou l’activation de la connexion RRC (resume) pour la transmission de données (MO Data). La cause de l’établissement n’est ni un SMS, ni de la signalisation mais la transmission de données.

Pour activer la transmission EDT, le mobile UE doit informer la station de base qu’il transmettra au cours du message 3 de la procédure RACH des paquets de données. Si la station de base supporte la transmission EDT, elle propose aux terminaux UE des séquences PRACH particulières (ou NPRACH pour le NB-IoT) en diffusant cette information dans le SIB2. Le terminal choisira une séquence PRACH pour constituer le message 1.

Dans le message 3 de la procédure RACH :

  • Si le terminal est à l’état RRC_IDLE, la transmission CP-EDT est mise en oeuvre et le terminal transmet la requête RRCEarlyData Request avec le message NAS encapsulé (S-TMSI, establishmentCause, dedicatedInfoNAS);
  • Si le terminal est à l’état RRC_INACTIVE, la transmission UP-EDT est mise en oeuvre et le terminal transmet la requête RRCResumeRequest

Le message EDT est transmis en clair sur l’interface radio si le mobile était à l’état RRC_IDLE ou chiffré en utilisant le contexte de sécurité AS si le mobile était à l’état RRC_INACTIVE. Le message NAS est quant à lui chiffré selon les clés de sécurités NAS connues au niveau du mobile UE et du cœur de réseau (MME/AMF).

Figure 8 : Protocole de transmission CP-EDT

Figure 9 : Protocole de transmission UP-EDT

Procédure de transmission pré-configurée PUR (Preconfigured Uplink resource)

La spécification 3GPP R.16 PUR [5,6] propose de réduire davantage la signalisation par rapport à la procédure EDT en supprimant les messages 1 et 2 de la procédure d’accès aléatoire.

Le mobile dispose ainsi d’une pré-configuration lorsqu’il est à l’état CONNECTE lui permettant de connaître :

  • Les spécifications de ressources (UL-Grant) ;
  • Le schéma de modulation et de codage MCS ;
  • Le nombre de répétition PUSCH ;
  • L’identifiant radio RNTI à utiliser : PUR C-RNTI

La configuration du mobile par un message RRC est déclenché soit par le mobile avec une requête PUR Configuration Request ou par l’eNB ou le réseau à travers un message RRC.

Dans le cas d’étude qui nous intéresse, le mobile étant statique la valeur du Timing Advanced (TA) ne change pas, dans le cas ou le mobile conserve la même cellule de service (Serving Cell). Comme évoqué dans l’introduction, le changement de cellule peut intervenir en cas de défaillance de la station de base lorsque le mobile est en écoute.

L’allocation de ressource de type 5, uniquement applicable pour les terminaux BL/CE est configurée à partir du paramètre PUR-Config [6].

La première transmission PUSCH PUR est séquencée par un message RRC, les messages subséquents sont ordonnancés par un message DCI.

Une étude plus importante doit être menée pour connaitre les conditions de validité de cette procédure.

 Etats RRC_INACTIVE (5G)/RRC_IDLE et RRC_CONNECTED

L’état RRC INACTIVE a été introduit en 5G de manière à conserver au niveau de la station de base et du mobile UE le contexte AS (Access Stratum), dans le but de réduire la consommation énergétique et le nombre de messages échangés entre le mobile UE et la station de base.

La spécification R.13 (4G) introduit deux nouveaux messages : RRC SUSPEND et RRC RESUME pour modifier l’état du mobile UE au niveau du mobile et de la station de base.

ATTENTION, en 4G le mobile revient à l’état RRC_IDLE à la réception du message RRC SUSPEND.

L’état INACTIVE apparait avec la 5G. Le noeud radioélectrique 5G peut être une station de base 4G ou une station de base 5G. Ainsi, l’état RRC_INACTIVE apparait à partir de la R.15 sur l’accés radioélectrique E-UTRAN, à condition d’avoir un cœur de réseau 5G.

Dans l’état RRC INACTIVE, le mobile et la station de base suspendent leur connexion radioélectrique mais le contexte AS est conservé au niveau du mobile et de la station de base. Le cœur de réseau considère que le mobile est toujours à l’état RRC CONNECTED. La sélection de cellule est gérée par le mobile mais le paging est géré par la station de base.

Figure 10 : Les états du mobile UE 4G/5G

Figure 11 : Grafcet des états du mobile pour le 5GC

Lorsque le mobile UE est à l’état RRC INACTIVE, il dispose d’un identifiant I-RNTI permettant d’identifier le contexte AS et permettant à la station de base de s’adresser au mobile UE via les messages de signalisation RRC, mais l’identifiant I-RNTI n’est pas utilisé pour embrouiller les bits du CRC.

Dans le cas d’un coeur de réseau 4G, le mobile ayant reçu une demande de suspension passe à l’état inactif. L’identifiant I-RNTI n’existe pas en 4G mais uniquement en 5G. De ce fait, pour la 4G, c’est l’identifiant S-TMSI qui est utilisé, ce qui explique pourquoi le S-TMSI et l’I-RNTI ne servent pas à embrouiller les bits CRC mais uniquement comme un identifiant de terminal.

Il y a deux formats I-RNTI :

  • Un format court de 24 bits
  • Un format long de 40 bits

Le mobile UE utilise l’un des deux formats en fonction de l’information portée par le drapeau « useFullResumeId » porté par le message SIB1.

Figure 12 : Les informations concernant l’identifiant I-RNTI portées par le SIB1

Le format court est utilisé de préférence dans les macro-cellules, le format long pour les micro-cellules ou pico-cellule. En effet, dans le cas des macro-cellules, lorsque le terminal est situé à l’extrémité de la cellule, la connexion radio est mauvaise. La taille minimale du TBS est de 48 bits, si les conditions radios sont mauvaises alors les données pouvant être transmises sans segmentation doivent avoir une taille inférieure à 48 bits. Le Short-I-RNTI ne faisant que 20 bits est préféré au Full-I-RNTI.

L’identifiant I-RNTI est utilisé pour notifier le mobile UE d’une procédure de paging ou pour mettre à jour la localisation (RNA Update). L’identifiant I-RNTI n’est pas utilisé lors de la procédure PRACH pour embrouiller la séquence DCI, il est transmis dans un message RRC, remplaçant l’identifiant UE_Identity en 4G (S-TMSI).

Par contre, la séquence DCI est toujours embrouillée par un identifiant RA-RNTI puis TC-RNTI. A ce titre, le TC-RNTI doit remplacer l’ancien C-RNTI de la précédente transmission SDT (cf la demande de modification : https://portal.3gpp.org/ngppapp/DownloadTDoc.aspx?contributionUid=R2-2102084)

Procédure

Figure 13 : La procédure d’activation de lien RRC (Passage de l’état RRC IDLE à l’état RRC CONNECTED) pour un coeur de réseau 4G

RRCRESUMEREQUEST ou RRCRESUMEREQUEST1

Quand le mobile UE souhaite transmettre un message, il déclenche la procédure d’accès aléatoire puis demande le rétablissement de la connexion radioélectrique via le message RRCResumeRequest ou le message RRCResumeRequest1. Le mobile émet la requête RRCResumeRequest1 si le SIB1 contient l’information useFullResumeID pour transmettre l’identifiant I-RNTI sur 40 bits. Sinon, le mobile émet la requête RRCResumeRequest avec l’identifiant SHORT-IRNTI.

UE CONTEXT RESUME REQUEST

La procédure UE CONTEXT RESUME REQUEST permet à l’eNB d’indiquer au cœur de réseau (MME/AMF) que le mobile UE souhaite reprendre la connexion RRC suspendue ou pour permettre l’émission d’un message EDT.

5G-NR : RA-SDT et CG-SDT

La procédure SDT (Small Data Transmission) est définie lorsque le mobile est à l’état RRC_INACTIVE.

La procédure RA-SDT est similaire à la procédure EDT lorsque le mobile est soit à l’état de veille, soit à l’état inactif en proposant de transmettre le signal en 4 étapes ou en 2 étapes. Plus précisément, la R.16 propose une procédure d’accès aléatoire en 2 étapes nommées 2-Step RA.

La transmission EDT ou RA-SDT transmet les informations lorsque le mobiles est à l’état de veille (CP-EDT) ou à l’état RRC_INACTIVE (UP-EDT ou RA-SDT). La procédure d’accès aléatoire 2-Step RA permet donc de transmettre les données en 2 étapes seulement.

La procédure CG-SDT est similaire à la procédure PUR lorsque le mobile est à l’état inactive.

L’une et l’autre sont en cours de spécification dans la R.17 [7]. La mise en œuvre de la R.17 radio ne sera pas réalisée avant 2024/2025.

Je bloque actuellement sur le point suivant :

En reprenant la spécification TS 36.300 :

« Transmission using PUR allows one uplink transmission from RRC_IDLE using a preconfigured uplink resource without performing the random access procedure. »

Mais, la 3GPP définit la transmission PUR de la manière suivante :

« Transmission using PUR is triggered when the upper layers request the establishment or resumption of the RRC Connection »

Cela signifie donc que l’UE est à l’état RRC_INACTIVE et non à l’état de veille?

Conclusion

Pour passer du mode de veille au mode connecté, le terminal UE émet une séquence aléatoire dont les caractéristiques (racine de la séquence) et l’instant d’émission est transmise par la station de base au mobile UE.

Concernant l’émission de la séquence aléatoire, la sous-trame de transmission est définie par le message SIB2.

La transmission SDT est défini comme une transmission pour laquelle l’UE n’a pas besoin de passer à l’état RRC_CONNECTED.

La procédure de transmission de message SDT à 2 messages (EDT ou RA-SDT) consiste à transmettre les données lors de la procédure d’accès aléatoire à l’état RRC_IDLE ou RRC_INACTIVE.

La procédure de transmission PUR ou CG-SDT nécessite que le mobile soit à l’état RRC_INACTIVE suivant un état RRC_CONNECTED. Lorsque le mobile est à l’état RRC_CONNECTED, la station de base transmet la configuration des allocations de ressource à l’UE (MCS, UL Grant, TA). Cette configuration n’est valable que tant que le mobile reste sous la couverture de la même station de base (pas de modification du TA Timing Advanced).

 Pour plus d’information, n’hésitez pas à me contacter pour une formation sur les réseaux LPWAN.

Ressources Bibliographiques

[1] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.1-2: Frame structure type 1 random access configuration for preamble formats 0-3

[2] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3

[3] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-2 NCS for preamble generation (preamble formats 0-3)

[4] Andreas Höglund, Dung Pham Van, Tuomas Tirronen, Olof Liberg, Yutao Sui, and Emre A. Yavuz, “3GPP Release 15 Early Data Transmission”, 2018, IEEE Communications Standards Magazine ( Volume: 2, Issue: 2, JUNE 2018), p90-96, https://doi.org/10.1109/MCOMSTD.2018.1800002

[5] Andreas Höglund, G. A. Medina-Acosta, Sandeep Narayanan Kadan Veedu, Olof Liberg, Tuomas Tirronen, Emre A. Yavuz, and Johan Bergman , 3GPP Release-16 Preconfigured Uplink Resources for LTE-M and NB-IoT

[6] 3GPP TS 36.213, R.16.8.0 : Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

[7] 3GPP TS 38.321, R.17.0.0 (mars 2022), MAC protocol Specification.

 

SDT – Small Data Transmission

Introduction

L’Internet des Objets a poussé la 3GPP a imaginé des protocoles dédiés pour des transmissions à faible volumétrie de données SDT (Small Data Transmission).

Le réseau 4G propose deux solutions SDT nommées EDT (Early Data Transmission) et la PUR (Preconfigured Uplink Resource).

Le réseau 5G propose deux autres solutions SDT nommées RA-SDT et CG-SDT. La technologie RA-SDT est proche de la solution EDT et la technologie CG-SDT est proche de la solution PUR.

Cet article est la continuité de la présentation de l’IoT Cellulaire (https://blogs.univ-poitiers.fr/f-launay/2017/05/28/mtc-le-reseau-m2m-iot-sur-la-4g-1ere-partie/) et je vais reprendre l’article sur le canal PRACH  : https://blogs.univ-poitiers.fr/f-launay/2020/05/02/etablissement-de-la-connexion-radioelectrique-comparaison-4g-et-5g/

Etude du signal d’accès aléatoire

Le signal d’accès aléatoire sur l’interface radioélectrique LTE est généré par le mobile selon la formule suivante :

La séquence Xu,v est une séquence de Zadoff-Chu (ZC). La séquence de PRACH s’appuie sur une séquence de ZC dans le domaine fréquentiel et la formule précédente permet d’appliquer la transformation du signal vers le domaine temporel.

La liste des préambules est transmises à l’UE via le message d’information système SIB2. La station de base propose une liste voire deux listes par cellule, chaque liste contient 64 préambules.

Un préambule racine est une séquence pseudo-aléatoire de Zadoff-Chu (ZC) qui est définie par la valeur de la racine. Les préambules de la liste sont obtenus à partir d’un décalage cyclique Cv du préambule racine.

Un nombre fixe de 64 préambules est alloué pour chaque cellule et en fonction de la longueur de décalage cyclique NCS, une ou plusieurs séquences racine d’accès aléatoire sont nécessaires par cellule pour générer les 64 préambules.

PREAMBULE PRACH (Accès Aléatoire)

Le préambule PRACH est constitué d’un préfixe cyclique de longueur TCP et d’une séquence de longeur TSEQ.

Figure 1 : Le préambule PRACH

Les longueurs TCP et TSEQ  dépendent de la structure de la trame (type 1 : FDD ou type 2 : TDD) et de la configuration définie au niveau de la couche RRC de l’accès aléatoire selon l’un des quatre formats ci-dessous :

Table 1 : La configuration de la séquence PRACH

Il convient de noter que durée de la séquence d’apprentissage définit la couverture de la cellule pour estimer correctement l’avance de synchronisation. Si eNodeB reçoit des préambules au-delà de la plage de cellules définie, l’estimation de l’avance temporelle sera erronée et l’accès aléatoire, la procédure échouera, ce qui entraînera de nouvelles tentatives de la part de l’UE.

Table 2 : La couverture de la cellule

 Les préambules par cellule sont divisés en deux sous-ensembles

La transmission du préambule PRACH est déclenché soit par la couche MAC (demande d’accès avec contention), soit par la couche RRC de la station de base (demande d’accès sans contention). L’étude porte sur la demande d’accès avec contention.

Lorsque le préambule est déclenché par la couche MAC de l’UE, la transmission de la requête d’accès doit être transmises sur des ressources tempo/fréquentielle définies par l’eNB, c’est à dire sur des fenêtres temporelles spécifiques correspondant à un numéro de sous-trame dans une trame (trame paire, impaire ou toutes trames) et sur des emplacements fréquentiels correspondant à des blocs de ressource. Les ressources tempo-fréquentielles autorisées sont transmises de l’eNB à tous les terminaux par le message de diffusion d’information SIB2 :

  • L’instant de transmission est défini via l’index PRACH-Configuration. Le numéro d’index de configuration PRACH, sur 6 bits (valeurs 0 à 63), permet de savoir dans quelle(s) sous-trames le PRACH peut être transmis sur chaque sous trame ou uniquement sur les sous trames paires
  • Le décalage prach-FrequencyOffset détermine la position du bloc de ressource (PRB) contenant la séquence dans le domaine fréquentiel

Table 3 : Table de configuration de l’index de configuration PRACH  [1]

PREAMBULE NPRACH (Accès Aléatoire)

A l’instar du LTE, les informations sur la procédure d’accès aléatoires sont transmises via le SIB2. On trouve la périodicité des demandes d’accès aléatoires, l’instant de transmission, la première sous-porteuse et le nombre de sous-porteuses allouées à la demande NPRACH, le nombre de répétition de la transmission du préambule.

La figure suivante est extraite du site : https://www.sharetechnote.com/html/Handbook_LTE_NB_rach.html


Figure 2 : Les sous porteuses NPRACH (informations SIB2)

Le signal NPRACH est donc transmis dans les ressources tempo-fréquentielles spécifiées dans le message SIB2.

Figure 3 : La transmission du NPRACH (exemple)

Dans le cas du NB-IoT, il n’y a que deux formats de préambules. Les préambules sont toujours composées d’un préfixe cyclique CP et d’une séquence.

Figure 4 : Comparaison des préambules entre le l’interface LTE et l’interface NB-IoT [1]

 La séquence du préambule PRACH/NPRACH

La séquence du préambule PRACH/NPRACH est issue du générateur de Zadoff-Chu :

Avec u, la racine de Zadoff-Chu,  la longueur de la séquence (en général 839)

La station de base transmet au mobile un index de racine. La correspondance entre l’index et la racine de Zadoff-Chu est indiquée dans la table 4.

Les séquences cycliques sont calculées à partir de

Table 4 : La correspondance entre l’indice de la séquence RACH et la racine de Zadoff-Chu [2]

La valeur de Cv est calculée par l’équation suivante :

La valeur de NCS est définie par la table 4 à partir de la valeur ZeroCorrelationZoneConfig transmise dans le message SIB2

Figure 5 : Le message SIB2

Table 5 : Les valeurs de NCS [3]

Il y a une ou au plus deux listes de 64 séquences par cellule. Les 64 séquences d’une liste sont extraites à partir de tous les décalages cycliques possible de la séquence racine (root). La valeur racine est transmise par la station de base via le SIB2 dans le message RACH_ROOT_SEQUENCE (pour la 1ère liste de 64 séquence) et dans le message ROOT_SEQUENCE_INDEX_HI si une deuxième liste est gérée.

 

Ressources Bibliographiques

 

[1] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.1-2: Frame structure type 1 random access configuration for preamble formats 0-3

[2] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-4: Root Zadoff-Chu sequence order for preamble formats 0 – 3

[3] TS 136 211 – V14.2.0 – LTE; Evolved Universal Terrestrial Radio  Table 5.7.2-2 NCS for preamble generation (preamble formats 0-3)

[4] Andreas Höglund, Dung Pham Van, Tuomas Tirronen, Olof Liberg, Yutao Sui, and Emre A. Yavuz, “3GPP Release 15 Early Data Transmission”, 2018, IEEE Communications Standards Magazine ( Volume: 2, Issue: 2, JUNE 2018), p90-96, https://doi.org/10.1109/MCOMSTD.2018.1800002

[5] Andreas Höglund, G. A. Medina-Acosta, Sandeep Narayanan Kadan Veedu, Olof Liberg, Tuomas Tirronen, Emre A. Yavuz, and Johan Bergman , 3GPP Release-16 Preconfigured Uplink Resources for LTE-M and NB-IoT

[6] 3GPP TS 36.213, R.16.8.0 : Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures

[7] 3GPP TS 38.321, R.17.0.0 (mars 2022), MAC protocol Specification.