Technologie de transport de la voix en 4G : CSFB (part 2)

Gestion de la mobilité entre le réeau 2G/3G et LTE

Comme nous l’avons entrevu dans le précédent article, un réseau doit en permanence savoir localiser un mobile afin de fournir les services à l’ayant droit. La procédure de localisation se nomme « Mobility Management », c’est-à-dire Gestion de la mobilité.

Pour terminer un appel via la fonction CS Fallback, le domain CS doit connaitre la position du mobile en se référant à la localisation fournie par le réseau LTE, c’est-à-dire en se basant sur l’aire d’enregistrement du mobile indiquée par le MME. Le MME a donc la charge d’informer la VLR de la zone de localisation du mobile sur le réseau 4G.

Le cœur de réseau 3G possède déjà la fonction permettant de gérer simultanément la mobilité sur le réseau en commutation de circuit (CS) et en commutation de paquets(PS), chaque mobile étant géré sur une zone nommée LA (Location Area) pour la partie CS et RA (Routage Area) pour la partie PS.

Afin de réduire le trafic de signalisation sur les réseaux mobiles 2G/3G et 4G, l’enregistrement de localisation du mobile sur le réseau SGSN par la VLR est ré-utilisé par la technologie CS FallBack : Concernant les informations de localisation du mobile sur le réseau 4G (TA : Tracking Area), le MSC/VLR exploite donc la même logique que pour le réseau PS en 3G, c’est-à-dire la VLR demande les données d’enregistrement du mobile sur le réseau 4G et les exploite de manière identiques aux données d’enregistrement de localisation fournies par les requêtes venant du SGSN.

 DoCoMo_MME1_database

Cela permet d’une part d’éviter une mise à jour trop fastidieuse des MSC pour prendre en compte les requêtes de localisation sur le réseau 4G pour la voix.

Il faut également se rappeler qu’un terminal sur le réseau 4G ne peut être sur le réseau 2G/3G en même temps. Ceci implique que le MME, qui contient la zone d’enregistrement du mobile sur le réseau LTE (TA) doit être en mesure d’identifier vers quel VLR il doit envoyer ses messages de gestion de mobilité. Le MME contient donc une base de données de localisation permettant d’avoir la correspondance entre la zone de localisation du réseau 4G (TA) avec la zone de localisation du mobile sur la VLR (LA). Cette base de données permet donc de déterminer quel MSC/VLR doit être contacté pour l’enregistrement de la localisation du mobile.

La figure 2 détaille l’échange d’information entre le MME et la VLR : La VLR a identifié le MME sur lequel était géré le mobile et le MME connait la VLR et le LA associé à la position du mobile si ce dernier est sur le réseau 3G CS. A l’inverse, la VLR connait l’équipement MME associé.

 

DoCoMo_MME_database

Figure 2 : Mise à jour des données de localization sur la VLR et le MME

 

Si nous reprenons la figure précédente, le call flow est le suivant :

  1. L’UE envoie une requête Tracking Area Update (TAU) vers le MME indiquant la position actuelle (TA) du mobile
  2. Le MME accomplie la mise à jour de la position du mobile vers le HSS via une procédure Location Update
  3. Le MME exploite la base de correspondance TA/LA pour identifier d’une part la zone de localisation LA du mobile correspondant au réseau de CS 2G/3G et la VLR correspondant, c’est-à-dire celui qui gère cette zone (LA). Via l’interface SGs, le MME envoie une requête LAU (Location Area Update) au MSC/VLR avec la valeur du LA correspondante.
  4. La VLR qui reçoit la demande de mise à jour de localisation enregistre la correspondance de l’identité du MME ayant fait la requête de mise à jour (comme c’est le cas avec le SGSN) et l’identité unique du mobile (IMSI). Cela permet au VLR de savoir sur quel MME (comme c’est le cas avec le SGSN) le UE est actuellement connecté, ce qui est nécessaire pour un appel à destination d’un mobile connecté sur le réseau 4G.
  5. La VLR lance une procédure d’enregistrement vers le HSS permettant à ce dernier de savoir sur quel VLR est maintenant enregistré le UE, et informe le MME du numéro TMSI affecté au mobile (Temporary Mobile Subscriber Identity).
  6. Le MME informe le mobile de son identité TMSI et de sa localisation LA.

Technologie de transport de la voix en 4G : CSFB

CSFB : Circuit Switched FallBack

Le réseau cœur déployé pour la 4G (nommé EPC : Evolved Packet Core) a été conçu pour s’interconnecter aux réseaux IP comme le LAN, la 3G, et évidemment le LTE.

Le principe du CS FallBack est assez simple : Lorsqu’un terminal mobile reçoit un appel téléphonique (Voix), il est informé via le message de Paging que le réseau auquel il doit accéder est le réseau de Commutation de Circuit (CS). Par conséquent, si le mobile était attaché sur le réseau 4G, il bascule vers le réseau 3G, et le mobile envoie une réponse d’acquittement vers le cœur de réseau en commutation de circuit (CS-Core). A partir de ce moment, toute la signalisation pour la session d’appel téléphonique est prise en charge par le réseau 3G. La figure 1 rappelle l’architecture des deux réseaux : CS sur le réseau 3G et PS sur le réseau 4G (EPC)

CSFB_DoCoMO

Figure 1 : Coeur Réseau 2G/3G et 4G

Pour que le Coeur de réseau 4G (EPC : Evolved Packet Core) soit compatible avec la technologie CSFB, il est nécessaire que ce dernier puisse communiquer avec le cœur de réseau en commutation de circuit CS-Core du réseau 2G/3G. En effet, le MME (mobility Management Entity) doit pouvoir contacter le MSC (Mobile Switch Center) et la VLR afin de donner procuration au réseau 2G/3G de la gestion de la mobilité. L’interface utilisée se nomme SG, et fait référence, en reprenant son rôle, à l’interface Gs existante entre le SGSN et le MSC dans le réseau 3G.

Lorsque l’appel est accepté, la technologie CSFB utilise à nouveau l’interface SG pour informer le réseau LTE de l’acceptation de l’appel. L’acquittement est donc transmis par le réseau en Commutation de Circuit (CS) vers le réseau LTE en empruntant l’interface SG.

Gestion de l’itinérance (Part 4) : VoLTE

Roaming LTE

VOLTE (prononce volti:) fait référence à plusieurs technologies pour délivrer des communications en temps réels par paquets IP. Le VOLTE permet de fournir des services existants comme la voix et les SMS sur le réseau LTE. Le standard IR.92 proposé par le GSMA s’appuie sur une partie de l’architecture IMS. L’IMS, pour résumer, est une plate-forme standardisée pour délivrer des services multimédias sur un support IP.

L’itinérance sur le réseau IMS (IMS Roaming) est spécifiée dans le document GSMA IR.65, faisant lui-même référence au document 3GPP 32 221. Nous allons utiliser ces documents pour écrire cet article.

Dans le cas du roaming LTE, on suppose l’interconnexion entre deux opérateurs assurées par un réseau de transport qualifié IPX.

La signalisation (par exemple TAU : Location Update du terminal par le protocole Diameter) et le roaming de données (Applications IP encapsulées dans un tunnel GTP) sont échangées entre l’opérateur A (Home – Opérateur nominal) vers l’opérateur B (Visited) via IPX.

IPX_2

Figure 1 : Roaming entre 2 réseaux LTE via un fournisseur de service IPX

Le fournisseur de service IP, nommé IPX est connecté aux réseaux des opérateurs LTE via une passerelle de bordure (BG). Dans la norme GSMA (IR.65), l’IPX se nomme InterService Provider.

Dans le cadre du VoLTE, la téléphonie est prise en charge par le réseau IMS (IP Multimédia Subsystem).  Pour un UE, dans son réseau nominal ou un réseau visité, il y a trois possibilité de se connecter à un serveur IMS comme le présente la figure 2

Volte_roaming_IP_domain

Figure 2 :Domaines d’adressages IP vers le réseau PS et IMS

Un UE souhaitant accéder au sous-système IMS nécessite une adresse IP. Une fois l’adresse octroyée, il est possible de connecter le P-GW/GGSN du réseau visité ou du réseau nominal au serveur IMS. Lorsque l’UE est sur un réseau visité, pour des raisons d’efficacité (lien direct notamment en roaming) il peut être préférable de connecter l’UE au réseau IMS du réseau visité comme le montre la figure 1 ou de passer par le réseau IMS du réseau nominal (Figure 2).

Il faut bien noter que l’accès au réseau visité IMS (l’accès au Proxy du réseau IMS, nommé P-CSCF) est directement connecté au PGW du réseau visité.

Volte_roaming1

Figure 3 : L’UE accède au réseau IMS du réseau visité via le PGW du réseau visité

Dans le cas ou l’IMS exploité est dans le réseau de l’opérateur nominal, l’UE a une connectivité IP sur le réseau visité mais toutes les fonctionnalités IMS sont fournies par l’opérateur nominal (Home Network).

Volte_roaming_IMS_Home_PGW_visite

Figure 4: L’UE accède au réseau IMS du réseau nominal via le PGW du réseau visité

La différence est la suivante, l’UE est virtuellement présent sur le réseau de l’opérateur nominal . Il faut bien noter que l’accès au réseau IMS du réseau home (l’accès au Proxy du réseau IMS, nommé P-CSCF) est directement connecté au PGW du réseau visité.

Enfin, dans le troisième cas de figure (figure 5), le réseau IMS utilisé est celui de l’opérateur nominal, comme c’était le cas précédemment sur la figure 4, mais en passant par le PGW du réseau nominal

Volte_roaming_IP_IMS_home_PGW_home

Figure 5 : L’UE accède au réseau IMS du réseau visité via le PGW du réseau visité

Pour bien comprendre la différence, il est nécessaire de décrire le réseau IMS, et les équipements de la couche de contrôle (CSCF).

Pour simplifier et finir cet article sur le roaming, nous allons illustrer le roaming LTE par la figure 6 ci-dessous qui montre les différents types de roaming qui est une autre représentation de la figure 2.

Volte_roaming

Figure 6 :Domaines d’adressages IP vers le réseau PS et IMS

Cette figure suppose un réseau Full IMS avec la gestion de la QoS via un opérateur tiers.

Or, le déploiement du VoLTE est une finalité en soi, en réalité à ce jour différentes techniques sont mises en œuvre pour contourner la VoIP sur le réseau LTE.

En effet, si l’objectif principal est de promouvoir l’utilisation du réseau de commutation de paquets (réseau IP) pour fournir des services multimédias (communication téléphoniques ou visiophonie) avec la même qualité de service que celle offerte par la commutation de circuit et sans coupure. La difficulté est donc double : le maintien de la QoE (Quality Of Experience), et l’interconnexion pour le service de la voix entre un réseau tout IP (LTE) et un réseau 2G ou 3G (commutation de circuit). Durant cette transition de la 4G, diverses alternatives sont proposées pour la transmission de la voix :

  • CSFB : Circuit Switch FallBack
  • SRVCC : Single Radio Voice Call Continuity  permet l’interconnexion entre le réseau à commutation de paquets (PS) et commutation de circuit (CS) sans incidence sur la QoE
  • VOLTE

Nous verrons également ces procédures dans une autre série d’articles publiés prochainement.

Gestion de l’itinérance (Part 3) : IP eXchange – IPX

IPX : IP eXchange

Le roaming de Data (et de la VoIP) n’est pas qu’un simple échange de flux entre les différents opérateurs car les opérateurs (V-PLMN et H-PLMN) doivent aussi assurer sur le réseau visité la même qualité  pour les services souscrits par l’abonné par rapport à l’accès aux services sur le réseau nominal (HPLMN), tout en assurant l’intégrité des données et la sécurisation du flux. C’est à ce prix-là que les opérateurs pourront se différencier des OTTs et vendre la plus-value des services proposés (RCS, VOLTE, …)

Le réseau IPX est un réseau IP autorisant une interconnexion entre plusieurs opérateurs mobiles et opérateurs fixes, dont les conditions de raccordements (interconnexion) et surtout de services sont stipulés par des accords entre les opérateurs et les fournisseurs de services. L’objectif est d’assurer la qualité d’expérience du client (QoE) en spécifiant contractuellement les accords entre les différents acteurs et monnayer la plus-value apportée par chaque maillon de la chaine de transport (SLA : Service Level Agreement).

IPX est donc un réseau IP d’interconnexion proposé par les opérateurs afin de garantir une qualité d’échange de données via des accords commerciaux sur des spécifications techniques. Chaque service doit être transmis sur le réseau d’un opérateur selon la spécification de QoS correspondant au service en question : La voix et la Vidéo supposant une demande de QoS élevée doit être transmises  sur des bearers (Canaux de Données) prioritaires alors que les MMS seront transportés sur des bearers de priorités basses. Cela nécessite donc que la facturation pour chaque flux soit contractualisée entre les différents opérateurs pour que la rémunération soit couplée au type de réservation de liens mis en place par les opérateurs.

IPX

L’IPX permet aux opérateurs de définir plusieurs accords afin de garantir les services proposés à ses abonnés ou qu’il soit dans le monde  comme par exemple les services suivants : Rich Communication Suite-enhanced (RCS-e), Near Field Communication (NFC),  Voice over LTE (VoLTE), Mobile Money (paiement par mobile).

L’IPBX doit donc répondre aux points suivants :

  • Un Environnement sécurisé : Le réseau IPX est un réseau IP transparent non accessible depuis Internet.
  • Des services d’interconnexions IP flexibles et ouvert à tout opérateur fixe ou mobile et fournisseur de service (ISP): Un seul contrat pour des accès plus facile et plus rapide aux services « à la carte »
    • Contrat Bilatéral : Le fournisseur de service paye un lien assurant la QoS de bout en bout (comme une demande de lien privé sur différents opérateurs)
    • Contrat Multilatéral : Un seule contrat mais de multiples connexions. Un fournisseur de service peut joindre plusieurs pays.
    • Suivi de la Facturation (Cascading Payments) : Gestion des flux d’informations nécessaire à la mise en place des connexions entre les opérateurs et les fournisseurs de services. Chaque opérateur est responsable des performances des flux sur la partie du réseau qu’il exploite.
    • Qualité d’interconnexion : Le trafic doit être géré en respectant la QoS et les niveaux de services doivent être spécifiés par contrat entre opérateurs (SLA)

SLA

 

Sur ce lien, vous trouverez le communiqué de Presse d’Orange du 2 mai 2012 : « Orange lance son offre Multiservice IP eXchange et propose des services de convergence IP de haute qualité »