Cours 2 – Niveau Master (Chap 1 – Part 3)

Les Modes de transmission

2.3 LTE et MIMO

2.3.1 Chaîne de transmission dans le sens descendant.

La couche physique du LTE se décompose en sous-bloc afin de répartir les flux d’informations issues de la couche MAC en bloc de transport jusqu’au mappage OFDM transmis sur chaque antenne.

Le synoptique de la chaine de transmission est décrite à la figure 2.10.

Figure 2.10. Chaîne de transmission MIMO

Afin de détailler le rôle de la chaîne, nous allons séparer l’étude en trois sous-parties :

  • Description de la chaîne entre les mots de code (codeword) aux couches spatiales
  • Description de la matrice de Précodage et association avec les modes de transmissions
  • Affectation aux ressources spectrales : Association du signal de référence au port d’antenne.

2.3.1.1 Chaîne de transmission du mot de code aux couches spatiales

A chaque TTI, la couche MAC délivre un ou deux bloc de transport (de taille TBS)

Un code CRC (cyclic redundancy check) de 24 bits est rajouté au transport bloc. L’objectif est de détecter une erreur de transmission. Le code CRC est le reste de la division euclidienne du transport block par le générateur  G exprimé par l’équation suivante.

La séquence binaire est ensuite segmentée en bloc de codage. Un CRC de 8, 16 ou 24 bits est rajouté à chaque bloc de codage avant d’être codé par un turbo-code ou un code convolutif. Le Turbo code utilise deux entrelaceurs dont la taille minimum est de 40 bits et la taille maximum est de 6144 bits (la norme propose 188 tailles différentes). Les codes bloc ont donc une taille comprise entre 40 bits et 6144 bits.

Le turbo code a un rendement de 1/3, le signal est ensuite poinçonné ou répété afin d’adapter la taille du flux de bits de sortie au débit désiré.

Le flux de bits ainsi obtenu se nomme codeword ou mot de code.

Figure 2.11. Couche Physique LTE

Le mot de code est ensuite embrouillé par une séquence pseudo-aléatoire de Gold (scrambling) et modulé suivant la modulation QAM définie par la couche MAC. La séquence de Gold est calculée en fonction de l’identité de la cellule, et avec l’identifiant RNTI de l’UE pour les canaux PDSCH, PUSCH et PUCCH. Ainsi, le récepteur peut séparer les mots de code provenant de cellules différentes dans le sens descendant et les mots de code provenant d’UE différent dans le sens montant et d’un même UE dans le cadre du MIMO.

Les mots de blocs embrouillés et modulé sont issus de la segmentation du bloc de transport ou des blocs de transport et constituent les sources d’entrées du bloc MIMO. On numérote par 0 et 1 les mots de code issus des blocs de transport.

En R.8, dans le sens descendant, les mots de code peuvent être transmis sur 1, 2 ou 4 antennes physiques. Dans le cas d’un retour d’information, l’eNb utilise l’information du rang de la matrice de propagation (RI) pour définir le nombre de couches spatiales utilisable par l’UE. Le nombre de couches spatiales est inférieur ou égale au RI. Le bloc Layer Mapper a pour objectif d’associer le ou les mots de codes au nombre de couches spatiales. Le nombre de couche spatiale est donc de 1, 2 ou 4 pour la R.8 et jusqu’à 8 antennes à partir de la R.10.

Figure 2.11. Layer Mapper

La figure 2.7 est un exemple de mise en correspondance de deux codewords vers 4 couches spatiales. Cependant, les différentes combinaisons résumées dans la table 2.7 existent.

Table 2.7. Associations entre mots de code et couches spatiales pour le sens descendant

SM : Spatial Multiplexing et DT : Diversity Transmission

2.3.1.2 Les matrices de précodage et les modes de transmission en DL

Après avoir disposé les mots de codes sur les différentes couches spatiales, chaque couche spatiale est précodée par des coefficients complexes en fonction du mode de transmission (TM) et transmis vers des ports d’antennes. Nous reviendrons sur la notion de port d’antenne ultérieurement et sur l’association entre les ports d’antennes et les antennes physiques.

Le traitement du signal consiste à convertir L couches spatiales vers N ports d’antennes en multipliant les symboles d’entrées par des coefficients complexes (matrice de précodage de taille N x L).

Le précodage s’appuie sur une matrice extraite d’un livre de code (codebook). Le livre de code est connu par l’UE et l’eNb et dans le cas de l’estimation du CSI avec retour vers l’émetteur, l’UE informe l’eNb de la matrice de codage la plus adaptée parmi la liste définie dans le livre de code. L’UE renvoie le numéro de la ligne correspondant à la matrice et cette information est portée par le PMI.

Dans le sens descendant, 10 modes de transmission ont été définis :

  • TM1 à TM7 ont été définis dans la R.8.
  • TM8 a été défini dans la R.9
  • TM9 a été défini dans la R.10
  • TM10 a été défini dans la R.11
  • TM9 a évolué dans la R.13 pour gérer les UE dédiés aux objets connectés.

TM1 : Single Transmission antenna.

Dans le cas de la transmission SISO, une seule antenne est utilisée à l’émission et une seule en réception.

TM2 : Transmit Diversity

La diversité de transmission utilise :

  • pour deux antennes d’émission : le codage SFBC (Space Frequency Block Coding). Il s’agit du codage Alamouti exploité en fréquence et non en temps (ce qui le différencie du STBC). La figure 2.4 illustre le code Alamouti en temps, on retranscrit le code dans le domaine fréquentiel :

En écrivant :

Alors, on obtient :

La matrice de précodage est donc (cf. section 6.3.4.3 3GPP TS 36.211) :

  • Pour 4 antennes  d’émission : le codage FSTD (Frequency Switched Transmit Diversity) : 4 symboles sont découpés en 2 paires, chaque paire est transmise sur deux antennes comme le SFBC sur des RB différents (frequency switched). Chaque ligne de la matrice correspond un port d’antenne :

est le code en temporel. Lorsqu’on retranscrit en fréquentielle, on obtient :

Se référer à la section 6.3.4.3 3GPP TS 36.211

Les canaux PDSCH, PDCCH et PBCH utilisent la diversité de transmission.

TM 3 – Open loop spatial multiplexing with CDD (Cyclic Delay Diversity)

Le multiplexage spatial en boucle ouverte se base sur le choix d’une matrice de précodage au niveau de l’émetteur sans connaissance de l’estimation du canal. En général, ce mode est choisi lorsque l’UE se déplace rapidement (scénario de haute mobilité) et le temps de calcul de l’estimation du canal (PMI) est supérieur au temps de cohérence du canal. Le RI est néanmoins transmis à l’eNb mais pas le PMI.

Ce mode supporte le multiplexage spatial de 2 ou 4 couches transmises simultanément sur 2 ou 4 antennes. La matrice de précodage utilisée en émission est connue par le récepteur et se calcule par le produit de trois matrices : Une matrice  de taille N x L et deux matrices carrées D et U de taille L x L : D.U

La matrice W distribue le signal provenant de chaque couche vers les P ports d’antennes, la matrice D permet d’avoir un décalage alors que la matrice U distribue l’énergie sur chacun des ports d’antennes.

Avec :

Table 2.8. Bibliothèque de matrices de précodage pour deux ports d’antennes

Afin de connaitre la position des colonnes constituant la matrice de précodage W, on se réfère à la spécification TS 36.211 Table 6.3.4.2.3-2 (cf. table 2.9).

Table 2. 9. Bibliothèque Tableau de codes pour la transmission sur 4 antennes en DL

Pour l’index 0 et pour deux couches spatiales, la matrice de précodage est constituée de la colonne 1 et de la colonne 4 de la matrice w0, laquelle se calcule à partir du vecteur u0.

Pour le mode de transmission TM3, 4 antennes, l’index est 12, 13, 14 et 15.

Les matrices D et U sont définies dans la spécification 3GPP TS 36.211 (Table 6.3.4.2.2-1) :

Table 2.10. Matrice de précodage : Matrices U et D

CDD représente la diversité temporelle : Un bloc est retransmis avec un retard spécifique constant représenté par U

TM3 : Transmit Diversity

Le TM3 nécessite uniquement l’information RI. Le PMI n’est pas transmis. Dans le cas où le rang de la matrice est unitaire, le mode TM3 est utilisé pour la diversité d’émission

Dans ce cas, la matrice de précodage est identique à la matrice de précodage du mode TM2

TM 4 – Multiplexage spatiale en boucle fermée (CSI transmis à l’émetteur)

Ce mode supporte le multiplexage spatiale SU-MIMO jusqu’à 4 couches spatiales multiplexées jusqu’à 4 antennes. L’estimation du CSI est réalisée à partir du CRS ce qui signifie que le retour de l’UE n’exploite pas de pilote dédié à l’UE.

La matrice de précodage s’appuie

  • Sur la table xx.8 pour un utilisateur transmettant un ou deux couches spatiales sur 2 ports d’antennes.
  • Sur la table xx.9 pour un utilisateur transmettant une à 4 couches spatiales sur 4 ports d’antennes.

Dans le TM4, les mêmes ressources temps fréquentielles sur les différentes antennes sont transmises vers un seul UE

TM 5 – MU-MIMO

Ce mode est similaire au TM4, il supporte la fonction de multiplexage spatial en boucle fermée de deux utilisateurs (MIMO 2×2) ou de 4 utilisateurs (MIMO 4×4). La matrice de précodage est extraite à partir des mêmes tables.

Dans le TM5, les ressources temps fréquentielles sur les différentes antennes sont transmises vers plusieurs UE

TM6 : Multiplexage spatial en boule fermé en utilisant qu’une seule couche de transmission.

Ce mode est un cas particulier du TM4 pour lequel le rang de la matrice (RI) est 1. L’UE estime le canal et retourne l’index PMI de la matrice de précodage la plus adaptée.

Dans le cas de deux antennes, la matrice de précodage est définie par la table xx.8 (1ère colonne) et par la table xx.9 (1ère colonne) dans le cas de 4 antennes.

TM7 : Faisceau de voie (Beamforming)

Le mode TM7 peut être vu comme le mode TM6 en boucle ouverte. Le faisceau de voie est dédié vers un UE, l’estimation du canal s’appuie de la part de l’UE sur le signal de reference UE-specific RS. Ainsi, les données et l’UE-RS sont précodés par la même matrice.

TM8 : Faisceau de voie sur deux couches

La R.8 a spécifié le beamforming sur une seule couche (TM7). La R.9 a specifié le beam-forming sur 2 couches. Ainsi, le TM8 permet de combiné le beamforming avec un multiplexage spatial pour un ou plusieurs utilisateurs. L’utilisation de deux couches permet également de faire du SU-MIMO ou du MU-MIMO.

TM9 : Faisceau de voie sur deux couches

La R.10 a spécifié le TM.9 pour étendre les configurations du MIMO sur 8 antennes. Ainsi, le SU-MIMO et le MU-MIMO sont définies dans le TM9 (comme une extension du TM4 et du TM8)

Pour pouvoir exploiter 4 antennes supplémentaires, la R.10 propose 8 signaux de références nommés CSI-RS et de nouvelles matrices de précodage calculées à partir des mots de codes existants : W=W1W2  ou :

  • W1 est une matrice de précodage diagonale large bande permettant de définir la sélection de voies
  • W2 change la phase du signal sur chaque polarisation de l’antenne

TM 10

Le TM10 est similaire au TM9 mais les antennes utilisées peuvent être sur des eNb différents. Le TM10 supporte la technologie COMP

xx.3.1.3 Les matrices de précodage et les modes de transmission en UL

La R.8 et la R.9 ne spécifient pas la possibilité de faire du MIMO sur le sens montant.

A partir de la R.10, les UE supportent le MIMO jusqu’à 4 couches, il n’existe donc que deux modes de transmission en Uplink :

TM1 : SISO

TM2 : Closed loop spatial Multiplexing

2.3.2 Les mappage sur les éléments de ressources

Le dernier bloc de la chaîne de transmission correspond à l’association entre les ports d’antennes et les antennes physiques.

Les ports d’antennes sont des entités logiques qui se définissent par les signaux de références qu’ils transportent. La table xx.11 fait l’association du port d’antenne et du signal de référence.

Table 2. 11. Association Signaux de références et port d’antenne pour le DL

Signaux de références CRS

Dans le chapitre sur la structure de la trame radio LTE, nous avons vu que les signaux de références CRS sont insérés dans chaque bloc de ressource (RB) émis par la station de base. L’UE doit estimer toute la bande du canal à partir de la connaissance du CRS et même en cas de forte mobilité (120 km/h à 250 km/h).

Les signaux de références CRS sont insérés dans tous les RB de la bande avec un motif répétitif.

Pour un préfixe cyclique normal, le mappage est effectué sur le premier et cinquième symbole OFDM de chaque slot pour les ports d’antennes 0 et 1 et sur le deuxième symbole OFDM pour les ports d’antennes 2 et 3.

Au niveau fréquentiel, les CRS sont espacés de 6 sous porteuses sur chaque port d’antenne et peut prendre une  position parmi les 6 positions possibles. La position en fréquence du CRS dépend de l’identité physique PCI de la cellule.

De plus, les éléments de ressource utilisés pour le port d’antenne p0 ne doivent pas être utilisés pour le port d’antenne p1, et vice versa pour éviter les interférences entre antenne.

Ainsi, la figure 2.13 présente le mapping dans le cas du préfixe normal (7 symboles par slot) pour une, deux et 4 antennes

Figure 2. 13. Mappage des CRS dans les ports d’antennes

L’allocation de ressources des données transmises est signalée dans le canal physique PDCCH par l’information         .

La table 2.12 propose une synthèse entre le TM et les ports d’antennes.

Table 2. 12. Correspondance entre le TM et les ports d’antennes

 

Massive MIMO : Fonctionnement (Troisième Article)

Voici le troisième article sur le déploiement du Massive MIMO.

Se référer aux articles précédents :

Massive MIMO : Définition (Première Partie)

Massive MIMO : Description de l’antenne (Deuxième partie)

La spécification pour le LTE définit 8 modes de transmission, le LTE-Advanced en défini 10 et un onzième mode est rajouté dans la release R.11. A part le mode TM1 qui ne nécessite qu’une seule antenne en émission et en réception, les autres modes permettent :

  • d’apporter une meilleure robustesse du canal par de la diversité en émission ou par la gestion de faisceau ;
  • d’améliorer la capacité par une transmission MIMO. Dans le cas du MIMO, le nombre de couches MIMO dépend du nombre de transmission décorrélées entre l’émetteur et le récepteur. Soit H la matrice du canal de propagation, le rang du canal correspond au nombre de couches MIMO possible.

Il est donc nécessaire d’avoir une antenne avec une colonne d’éléments rayonnants, la polarisation cross-polaire permet de doubler la diversité.

Une antenne est alors configurée par :

  • un seul élément rayonnant ;
  • deux éléments rayonnant en cross-polaire ;
  • une colonne d’élément rayonnant (avec une seule ou deux polarisation) ;
  • de plusieurs colonnes, chaque colonne contient plusieurs éléments rayonnants (en nombre égal).

Dans le cas des antennes actives, plusieurs AE sont regroupés dans un TRX, et

On définit les caractéristiques de l’antenne par une lettre A à I :

Figure 14 : La configuration des antennes (extrait livre : « LTE-Advanced Pro, Une étape vers le réseau de mobiles 5G », LAUNAY, PEREZ)

Les modes de transmissions nécessitent une configuration d’antenne :

  • TM1 : SISO n’utilise qu’une seule colonne et une seule polarité
  • TM2 : Diversité en transmission nécessite 2 ou 4 colonnes d’éléments rayonnants. Elle peut donc utiliser la configuration d’antenne D (une colonne de polarisation +/- 45°), E, F, H ou I. Avec deux colonnes, le codage utilisé est le code d’Alamouti SFBC (Space Frequency Block Codes), avec 4 colonnes on rajoute de la diversité temporelle FSTD (Frequency Shift Time Diversity).
  • TM3 : SU-MIMO en boucle ouverte avec diversité CDD (Cyclic Delay Diversity) nécessite 2 ou 4 colonnes d’éléments rayonnants. Elle peut donc utiliser la configuration d’antenne B, D (une colonne de polarisation +/- 45°), E, F, H ou I.
  • TM4 : SU-MIMO en boucle fermée avec la configuration d’antennes B,D,E,F,H ou I
  • TM5 : MU-MIMO avec la configuration d’antennes B,C,E,F,H.
  • TM6 : Multiplexage spatiale pour la formation de faisceau avec la configuration d’antennes B,C,E,G (plusieurs colonnes) par précodage numérique (PMI)
  • TM7 : Multiplexage spatial pour la formation de faisceau et MIMO dans une direction donnée en exploitant l’angle d’arrivée (AoA) ou direction à l’arrivé (DoA). Le mobile ne distingue plus une antenne physique comme dans les modes précédents mais une antenne virtuelle (cf. figure 4) en s’appuyant sur des éléments rayonnants à égales distances (ULA : Uniform Linear Array) dont la distance est inférieure à lambda/2 (lambda est la longueur d’onde). Ce mode nécessite la configuration d’antennes B,C,E,G.
  • TM8 : Introduit dans la R.9, le mode TM8 est similaire au TM7 avec deux couches.
  • TM9 : SU-MIMO et MU-MIMO à 8 couches.

Pour le mode TM7, la spécification 3GPP introduit la notion d’antenne virtuelle AP5 : le terminal ne voit qu’une seule antenne virtuelle mais l’orientation numérique du faisceau est obtenue en apportant un déphasage et un gain constant sur chacune des antennes physiques. Une antenne physique est nommée dans cet article par antenne individuelle : le même signal est transmis sur 4 TRX avec une pondération différente, chaque TRX est connecté à une antenne individuelle.

Figure 15 : La connexion de l’antenne virtuelle et physique

Le standard 3GPP introduit la notion de port d’antenne, qui une nouvelle fois peut apporter de la confusion. Un port d’antenne est un port logique.

Tableau 1 : Les ports d’antenne pour la 4G

Comme l’indique la table 1, les signaux de références correspondent à un numéro de port d’antenne. Les ports d’antennes correspondants au UE Specific RS sont utilisés pour la formation du faisceau (obligatoirement supporté en mode TDD et optionnel en mode FDD).

Les signaux de références sont référencés à un numéro de port d’antenne, mais plusieurs ports d’antennes différents transmettent le signal vers la même antenne individuelle (antenne physique) ou transmis vers plusieurs antennes individuelles. La station de base gère la correspondance entre un port d’antenne et l’antenne individuelle.

Dans le cas de la formation d’un faisceau numérique (beamforming), le calcul des pondérations à effectuer sur chaque antennes individuelle (nommé aussi poids) est réalisé par la station de base en s’appuyant sur le rapport de retour d’état du canal 4G (CSI à partir des signaux de références) ou à partir des signaux de références sur le lien montant.

II-2) Les signaux de références

Un signal de référence (CRS ou CSI-RS) est une séquence pseudo-aléatoire transmise sur chaque antenne individuelle. La séquence pseudo-aléatoire permet au récepteur de séparer les différentes séquences CSI-RS et d’estimer la qualité du signal reçu au niveau de chaque séquence de référence.

Le récepteur n’a pas besoin de connaître le nombre d’antennes individuelles de l’antenne MIMO (ou Massive MIMO, il doit savoir combien de signaux de référence il doit mesurer. Il retourne ainsi l’état du canal de propagation ayant affecté chaque signal de référence. Pour que cette information soit utile, il est nécessaire que les signaux de références soient décorrelées. Ainsi, chaque signal de référence doit être transmis sur une et une seule antenne individuelle.

Dans le cas du LTE (R8, R9), le MIMO était limité à 4 antennes. L’exploitation de 4 signaux de références CRS suffit.

Si la release 10 augmente à 8 signaux de références CSI-RS, il est nécessaire de monter à 16 (R.13) puis 32 (R.14) signaux de références CSI-RS pour augmenter le nombre de chaîne de transmission TRX. Mais cela reste insuffisant pour fonctionner avec une antenne massive-MIMO 64T64R sauf si l’on transmet deux séquences CSI-RS sur deux antennes individuelles dont la polarisation est croisée (il s’agit ici d’une hypothèse, je n’ai aucune certitude sur ce point.)

Pour lever cette limitation, dans le cas LTE-FDD la station de base utilise la combinaison des signaux SRS et CSI-RS. Le signal SRS est le signal de référence émis par le terminal mobile vers la station de base. Ainsi dans le cas de la 4G TDD, il est plus efficace d’exploiter l’estimation du canal sur le lien montant.

Pour les modes TM7 et TM8 en 4G, la station de base utilise les signaux de références UE-RS. Pour la station de base 5G, la station de base s’appuie sur le signal de référence SRS du lien montant.

Dans le cas de la 5G à 3,5 GHz, les signaux de références du lien montant SRS suffisent à la station de base pour estimer la formation du faisceau.

Toutefois, le nombre de signaux de références CSI-RS étant limité, la 5G NR en mode FDD s’appuie sur deux méthodes :

  • Reciprocity based CSI : Il s’agit d’estimer le signal de référence CSI-RS à partir des signaux SRS
  • Closed Loop : Le terminal UE envoie à la station de base les informations du canal CSI

II-3) Le mode de transmission Massive MIMO en 5G

Pour améliorer les performances de la méthode Closed Loop, l’accès initial propose une commutation des faisceaux (beam switch transmission procedure) en utilisant différent blocs SSB. Au niveau de l’antenne, un réseau de calibration est nécessaire pour pointer dans la bonne direction. Ainsi, le terminal UE détermine le bloc SSB et renvoie les informations du canal pour chaque faisceau reçu à la station de base gNB. Ensuite, des informations complémentaires peuvent être transmis selon le type de configuration choisi :

  • CSI TYPE 1 : Normal (PMI) feedback dans le cas du SU-MIMO donnant la direction du faisceau le plus important
  • CSI TYPE 2 : Enhanced (explicit or codebook based) dans le cas du MU-MIMO en apportant plus d’information de retour par le terminal à la station de base.

ANNEXE

Reference 1 :

https://www.5gamericas.org/wp-content/uploads/2019/07/MIMO_and_Smart_Antennas_July_2013_FINAL.pdf)

Référence 2 : Livre « LTE-Advanced Pro, Une étape vers le réseau de mobiles 5G », Launay F, Perez A

(https://www.amazon.fr/LTE-Advanced-Pro-Fr%C3%A9d%C3%A9ric-Launay/dp/1784055778)