Le service XRM : réalité étendue et média (RXRM : Real-Time XRM)

Introduction

Le XRM, ou service de réalité étendue et média, représente une convergence de technologies immersives que la 5G permet de déployer à grande échelle grâce à ses caractéristiques techniques avancées.

Le XRM englobe principalement:

1. La réalité virtuelle (VR) – immersion complète dans un environnement numérique
2. La réalité augmentée (AR) – superposition d’éléments numériques sur le monde réel
3. La réalité mixte (MR) – fusion interactive des mondes réel et virtuel
4. Les médias immersifs – contenus multimédia à forte composante d’immersion

Les avantages offerts par la 5G pour le XRM sont multiples:
– Faible latence (temps de réponse inférieur à 10ms) permettant des expériences immersives fluides
– Bande passante élevée pour transmettre des contenus haute définition
– Edge computing (traitement des données au plus près des utilisateurs)
– Fiabilité accrue des connexions

Ces services XRM trouvent des applications dans de nombreux domaines comme:
– L’éducation et la formation professionnelle
– La santé (chirurgie à distance, visualisation médicale avancée)
– L’industrie (maintenance assistée, jumeaux numériques)
– Le divertissement et les médias
– Le commerce (shopping immersif)

II) Déploiement technique

Du point de vue technique, la 5G propose le service XRM grâce à plusieurs mécanismes spécifiques :

1. Network Slicing : C’est effectivement une technologie clé pour le XRM. La 5G permet de créer des « tranches réseau » dédiées avec des caractéristiques adaptées aux besoins des applications XR :
– Une tranche URLLC (Ultra-Reliable Low-Latency Communications) pour minimiser la latence
– Une tranche eMBB (enhanced Mobile Broadband) pour garantir la bande passante nécessaire aux contenus haute définition.

2. Architecture Service-Based (SBA) :
– L’AMF (Access and Mobility Management Function) joue un rôle important en gérant les connexions des terminaux XR avec une priorité adaptée
– Le PCF (Policy Control Function) définit des règles QoS spécifiques aux flux XR
– L’UPF (User Plane Function) peut être déployé au plus près des utilisateurs (edge) pour minimiser la latence

3. Edge Computing :
– Déploiement des MEC (Multi-access Edge Computing) en bordure de réseau
– APIs ouvertes pour les développeurs XR (via ETSI MEC)
– Traitement local des données sensibles au temps (rendu, tracking, etc.)

4. QoS spécifique :
– Utilisation de 5QI (5G QoS Identifier) dédiés pour les flux XR
– Garantie de SLA (Service Level Agreement) adaptés aux besoins immersifs
– Mécanismes d’adaptation du débit selon les mouvements de tête (viewport-adaptive streaming)

5. Technologies radio avancées :
– Beamforming pour diriger l’énergie vers les terminaux XR
– Utilisation des bandes millimétriques (mmWave) pour les environnements à haute densité
– Duplexage flexible pour optimiser les flux montants/descendants

6. API réseau XR spécifiques :
– NEF (Network Exposure Function) exposant des API pour les applications XR
– Interfaces permettant aux applications de négocier dynamiquement les ressources

Ces différents mécanismes sont nécessaires pour apporter les caractéristiques essentielles du XRM :
– Latence ultra-faible (1-10ms)
– Bande passante garantie (jusqu’à plusieurs Gbps)
– Fiabilité élevée (99,999%)

Le réseau 5G – 5GS

Le réseau 5G (5G System) se compose d’un accès Radio (NG-RAN : Next Generation RAN) et d’un cœur réseau (5G Core).

I. L’accès radio 5G

L’accès radio 5G est constitué de stations de base de nouvelle génération qui forment le nœud de connexion des mobiles avec le cœur réseau 5G (5GC)

Les mobiles UE communiquent avec les stations de base soient par un lien radio 5G, soit par un lien radio 4G. Si la communication est en 5G, la station de base se nomme gNB (next Generation Node Base Station), si la communication est en 4G, la station de base est une station de base 4G eNB évoluée pour s’interconnecter avec le cœur réseau 5G. La station de base se nomme ng-eNb (Next Generation eNb).

Les fonctions de la station de base gNb sont  assez similaires avec l’entité eNB. Cependant, les différences concernent la gestion de la qualité de service par flux et non par support (bearer) et la gestion des tranches de réseau (Slices) sur l’interface radio.

Pour rappel, un slice est composé d’instances logiques du réseau mobile permettant d’apporter un service réseau de manière efficace en vue de répondre à une qualité de service QoS spécifique à ce service (se référer à l’article Network Slicing).

II. Le cœur réseau 5G (5GC)

Le cœur réseau 5G est adapté pour la virtualisation du réseau et s’appuie sur le découpage du plan de contrôle (Control Plane) et du plan utilisateur (User Plane) définit dans l’architecture CUPS.

Par comparaison avec la 4G CUPS, on pourrait dire que  :

  • L’entité AMF (Access and Mobility Managmenent Function) reprend le rôle de l’entité MME. L’entité AMF établit une connexion NAS avec le mobile UE et a pour rôle d’enregistrer (attachement) les mobiles UE et de gérer la localisation des mobiles sur le réseau 3GPP et/ou non 3GPP.
  • L’entité SMF (Session Management Funtion) reprend le rôle de l’entité SGW-C et PGW-C. L’entité SMF permet de contrôler les sessions PDN. L’entité SMF est choisie par l’entité AMF puisque l’entité AMF  gère la signalisation NAS avec le mobile. L’entité SMF est responsable de la gestion du plan de contrôle. L’entité SMF a une interface avec l’entité qui gère la politique des flux (PCF : Policy Charging Function).

Le plan de transport est composé de passerelles de données qui réalise des mesures sur les données transportées et réalise l’interconnexion avec les réseaux Data (PDN). Dans l’architecture CUPS, les fonctions du plan de transport sont gérées par les entités SGW-U et PGW-U. Pour le cœur réseau 5G, les fonctions du plan de transport sont à la charge de l’entité UPF (User Plane Function). L’entité UPF communique avec l’entité SMF par l’interfae Sx et selon le protocole PFCP. Se référer à l’article présentant l’architecture CUPS.

L’entité PCRF de l’architecture 4G permet de définir les règles de contrôle et les politiques de flux avec l’entité SGW/PGW. En 5G, l’entité PCRF se renomme PCF et permet de contrôler les flux à la fois au niveau de l’entité SMF mais également au niveau de l’entité AMF afin de pouvoir apporter une meilleure granularité sur les flux autorisés en prenant en compte la localisation du mobile UE.

Le profil utilisateur (son abonnement, ses droits, …) sont sauvegardées dans une base de données UDR accessible via l’entité UDM (Unified Data Management). L’entité UDM conserve les profils de sessions de données (sessions PDU) et de l’entité AMF sur laquelle est attachée le mobile UE (éventuellement les entités AMF pour un accès 3GPP et non 3GPP sur un autre opérateur).

L’enregistrement du mobile nécessite une double authentification réalisée au niveau de l’entité AMF et du mobile UE à partir de vecteurs d’authentifications fournies par l’entité AUSF (AUthentication Server Function).

Enfin, l’entité NSSF (Network Slice Selection Function) est une entité permettant d’assister l’entité AMF de la sélection des instances logiques du réseau pour une tranche de réseau (slice) défini.

La figure 1 présente l’architecture 5G et les interfaces entre chaque entité.

Figure 1 : L’architecture du réseau 5G point à point (R.15)