Cours IUT – Chap 1 (Part 5)

L’architecture du réseau de mobiles 4G

Suite de l’article précédent

1.5. La transition vers la 5G

1.5.1 La Double Connectivité sur le NG-RAN

L’évolution vers la 5G propose dans un premier temps un scénario de déploiement entre les stations de bases 5G  (nommé gNB)  avec une station de base 4G eNb (DC option 3C) puis entre les stations de bases 5G avec le cœur réseau EPC (DC option 1A). La solution de DC constitue ainsi la première phase nommée NSA (Non Standalone).

Nous allons donc nous intéresser au DC en considérant l’un des trois scénarios suivants (Figure 1.25) :

  • eNB est le maître, le gNb est l’esclave
  • gNB est le maître, le eNB est l’esclave
  • ng-eNB auparavant nommé eLTE eNB  est le maître, le gNb est l’esclave

La station de base ng-eNB est une evolution de la station de base eNB leur permettant d’être interconnectée avec le coeur réseau 5G (appelé 5GC).

Figure 1.25 : La description des scénarios DC pour le réseau 5G

Dans le cadre de la 4G, nous avions défini deux types de séparations de flux :

  • au niveau des bearers (QoS, ARP) : Split Bearer
  • au niveau des paquets PDCP : MCG/SCG bearer

En appliquant les principes sur le réseau 5G, nous obtenons :

1 – pour le trafic (U-Plane) ne pas utiliser le gras une séparation (se référer à la figure 1.20)

  • au niveau des paquets PDCP : SCG bearer
  • au niveau du SGW

Les paquets sont séparés au niveau de la couche PDCP de la station de base 5G secondaire SgNB (si la station de base eNB est le maître MeNB) ou la station de base 4G secondaire SeNB (si la staion de base 5G gNB est le maître MgNb).

Figure 1.26 : L’architecture protocolaire de la double connectivité en 5G

2 – pour le contrôle (C-Plane), deux options :

  • Option C1 : Seul la station de base 4G maître MeNB génére les messages RRC transmis au mobile UE
  • Option C2 : Les deux stations de bases émettent des messages RRC vers l’UE. Cette configuration est nouvelle par rapport à la technologie DC 4G.

Figure 1.27 : La couche RRC pour l’architecture DC en 5G

1.5.2 Le réseau hétérogène 5G

Une solution pour densifier le réseau est de s’appuyer sur le réseau WiFi pour les zones comme les aéroports et les surfaces commerciales. L’UDN (Ultra Dense Network) s’appuie sur une couverture LTE Indoor, le LTE sur la bande non licenciée et le WiFi.

Dans les releases R.13 et R.14, le WiFi est vu comme un point d’accès supplémentaire et la 3GPP propose trois solutions alternatives que nous étudierons dans le chapitre 3 :

  • Interfonctionnement du LTE et du WiFi afin de transférer le trafic LTE sur le WiFi
  • LWA : LTE WiFI Aggregation pour lequel on agrège des canaux WiFi avec des canaux LTE
  • LAA : Licenced Assisted Access permettant d’utiliser la technologie d’accès LTE sur les bandes non licenciées

En 5G, les terminaux pourront exploiter à la fois les stations de bases 4G (eNB), les stations de base 5G (gNb) et les points d’accès WiFi grâce à un découpage des flux sur le réseau de transport fronthaul : L’unité BBU et le module RRU sont décomposés en trois entités nommées CU (Control Unit), DU (Digital Unit) et RRU/AAU (Active Antenna Unit).

L’entité CU gère les ressources radios et l’établissement, le maintien et la libération des DC.

L’entité DU gère la couche physique et la gestion des erreurs (HARQ/FEC).

Le RRU/AAU gère les couches physiques RF/BB pour le massive MIMO.

1.5.3 La réduction de la latence : le Fog Computing

Afin de réduire la latence, une nouvelle entité MEC (Mobile Edge Computing) joue le rôle de Datacenter au plus proche des antennes afin de répondre à des applications de type :

  • Vidéos
  • IoT : Internet of Thing
  • Réalité Augmentée
  • Cache de données
  • Intelligence Artificielle

Le MEC est installé au plus proche des antennes, ce qui permet à un grand nombre d’utilisateurs d’accéder en temps réels à des services avec une faible latence. A titre d’exemple, dans le cadre de manifestation sportive (stade de foot), les vidéos professionnelles peuvent être diffusées en locale via un serveur vidéo de broadcast hébergé par le MEC afin que les spectateurs puissent visualiser en temps réel les différents champs de caméra. Pour l’IoT, un serveur d’hébergement peut réaliser les actions à effectuer au niveau du MEC afin d’éviter un transfert de toutes les données vers le serveur d’application hébergé dans le Cloud.

Figure 1.28 : L’évolution du réseau d’accès 5G – MEC/CU/DU/AAU

 

Pour ceux qui veulent en savoir plus, des formations 5G à distance ou en présentielles peuvent s’organiser.

Contactez moi : frederic.launay@univ-poitiers.fr

Les terminaux 5G

Les opérateurs ont déposé leur demande auprès de l’ARCEP pour obtenir une bande de 50 MHz afin de déployer la 5G.

Cette bande autour de 3,4 GHz va permettre à l’opérateur de délivrer de la 5G par le mécanisme de double connectivité. Il s’agit de la 5G-NSA (Non StandAlone) déjà déployé par d’autres opérateurs dans plusieurs pays du monde.

Les enchères pour l’attribution des bandes 5G (jusqu’à 100 MHz de bandes) a été retardée à une date ultérieure, probablement début mai ce qui risque de retarder le lancement commercial de la 5G en France (initialement prévue en Juillet 2020).

Les équipementiers 5G (Qualcomm, Samsung, Huawei) fournissent déjà des terminaux 5G, dans cet article je présente les constructeurs de modem 5G et les terminaux qui sont vendus dans le monde et qui seront vendus en France.

La plupart des terminaux sont 5G NSA, il existe néanmoins des terminaux dual-mode (5G-NSA et 5G SA).

Les résultats sont montrés sous forme synthétiques de tableau, cette étude a été réalisée fin février 2020

I) Les équipementiers

II) Les téléphones

Les terminaux 5G dans le monde sont résumés dans le tableau suivante, avec en couleur les terminaux qui seront commercialisés en France (Selon la liste du 29/02/2020) à savoir

  • Huawei Mate 20 et Mate 30
  • Xiaomi Mi Mix 3
  • Samsung S10 et S20
  • ViVO Z6

 

Double Connectivité (DC – Dual Connectivity) 4G/5G

La 5G arrivera en Juillet 2020, le déploiement sera un déploiement au niveau de la couche radio. Comment la 5G sera déployée? Quels services va t’elle apporter? Quelles performances? Comment la station de base 5G (gNB) sera controlée? Peut on parler de 5G si le coeur réseau est 4G?

Ces réponses seront apportées dans une série d’articles, et voici le premier article d’une longue série sur la double connectivité.

Introduction

La double connectivité implique la présence de deux stations de base pour apporter des ressources radio-électrique vers un terminal mais un seul point de terminaison de signalisation vers le coeur réseau. Dans une première phase, le coeur de réseau est le coeur de réseau 4G (EPC), le point de terminaison est donc l’interface S1-MME.

La double connexion implique soit deux stations de bases LTE (se référer à l’article suivant) soit une station de base NR et une station de base LTE (Multi-Radio DC – MR-DC aussi nommé NR-DC).

Chaque nœud radio contient plusieurs cellules (une cellule pour une antenne omni-directionnelle, trois cellules, 6 cellules pour des antennes multi-sectorielles, …), et chaque nœud gère plusieurs porteuses LTE ou NR (agrégation de porteuses).

La double connexion implique donc la gestion de groupe de cellules (GC : Group Cell) pour chaque nœud radio. L’objectif d’un groupe de cellules est de gérer les données sur une ou plusieurs porteuses pour augmenter le débit. Dans un groupe de cellules (GC), on identifie la cellule principale (SpCell) qui est en charge de contrôler toutes les cellules du groupe et optionnellement une ou plusieurs cellules secondaires (SCell).

La double connectivité définie la notion de support MCG (Master Cell Group) et SCG (Secondary Cell Group bearer). Le support MCG est géré par la station de base maitresse, le support SCG correspond aux supports de la station de base secondaire. La double connexion permet de modifier la terminaison du plan de transport (U-plane termination) vers le support MCG ou SCG via la signalisation S1-MME sans modifier le point de terminaison du nœud de contrôle S1-MME (la signalisation est toujours définie entre le cœur de réseau et la station de base maîtresse).

Ainsi, si on appelle MCG le groupe de cellule maître et SCG le groupe de cellules secondaires, le MSG et le SCG peuvent avoit un SpCELL et des SCELL.

La fonctionnalité Double Connectivité (Dual Connectivity DC) a initialement été spécifiée sur le réseau de mobiles 4G entre deux stations de bases eNB différentes (sur des porteuses différentes) avec l’objectif d’augmenter le débit ressenti par l’utilisateur en agrégeant des flux des deux eNB en dépit de la latence provoquée par le lien X2 (backhaul). Cela constitue une différence avec l’agrégation de porteuses ou l’agrégation des flux est réalisée sur la même station de base dans deux bandes radios différentes. Dans le cas de la double connexion, les stations de base n’ont pas besoin d’être synchronisées (et peuvent donc être non co-localisées).

Figure 1 : Agrégation de porteuses et Double Connexion

L’interface X2 est une interface physique, généralement en Fibre Optique. L’interface X2 peut être séparée en deux interfaces, l’interface X2-U pour l’échange de données du plan utilisateur entre la station de base maîtresse et secondaire (handover, double connexion), et l’interface X2-C permettant l’échange des informations de contrôle entre les deux stations de base.

La pile protocolaire pour le plan de transport sur l’interface X2-U utilise les couches protocolaires GTP-U, UDP, IP et la couche de niveau 2

  1. La double connectivité DC 4G-4G (se référer à l’article DC 4G/4G)

L’option DC 4G-4G a déjà été présentée dans un article précédent, on différencie le plan de contrôle et le plan de trafic. L’une des deux stations de base est responsable de la signalisation avec le cœur réseau et le terminal. Les supports (nommés bearer) de signalisation correspondent aux bearer SRB1 et SRB2 entre le terminal Ue et la station de base maîtresse (MeNB). La station de base secondaire est responsable de la connexion de données additionnelles sur le lien radio (DRB) et vers le cœur réseau.

Plan de contrôle :  La station de base maîtresse (MeNB) établie la connexion RRC avec le terminal UE et la connexion radio avec l’entité SeNB (Secondary eNB) est contrôlée par la station de base maîtresse.

Plan utilisateur : Deux options sont supportées pour la DC 4G-4G :

  • Option 1A : Le cœur de réseau établit deux supports (bearer) avec chacun des entités eNB ;
  • Option 3C : Le support est séparé par l’entité MeNB : Split Bearer

Figure 2 : Pile protocolaire DC 4G-4G

Le terminal UE ne dispose que d’une seule entité RRC.

Dans le cas de la double connexion 4G-4G, les deux options retenues parmi toutes les options possibles sont l’architecture 1A et 3C.

Pour l’option 1A, la séparation des flux est gérée au niveau du cœur réseau (SGW).

Pour l’option 3C, la séparation des données est basée sur le routage de support de données PDCP.

Figure 3 : Double Connexion 4G-4G

  1. DC 4G-5G : Déploiement NSA

Le mode de déploiement de la 5G s’appuiera en 2020 sur une double connectivité 4G-5G (mode NSA – Non Standalone Architecture). L’opérateur conserve le cœur de réseau 4G (EPC), la signalisation entre l’accès radio et le cœur de réseau est réalisée par l’entité eNB. On parle d’option 3

Remarque : si le cœur de réseau était 5G on parlerait alors d’option 7, tout chose égale par ailleurs.

Pour l’option 3, le terminal UE est sous le contrôle de la station de base 4G et lors de la demande de connexion radio avec la station de base eNB (LTE PCell), le terminal va être configuré pour monter un support radio NR avec la station de base gNB (dénommée en-gNb : E-UTRAN – NR gNB pour rappeler le mode DC).

Plan de contrôle : Sur l’interface radio, le terminal UE est contrôlé par l’entité eNB et en-gNB (par des messages RRC). La signalisation (CP : Control Plane) est échangée entre les deux stations de base via le lien backhaul X2.

L’application X2AP réalise plusieurs fonctions comme le rappelle la figure 4 :

Figure 4 : les fonctions supportées par l’application X2AP

Plan Utilisateur : Le terminal UE peut être connecté simultanément sur l’entité eNB et en-gNB pour le plan utilisateur ou uniquement avec l’entité en-gNB.

La fonction DC 4G-5G option 3 se décline en trois sous options (figure 4) en séparant le support au niveau de l’accès radio (split bearer) ou en créant un support au niveau du cœur de réseau (MCG ou SCG) :

  • option 3 : La séparation du support (split bearer) est réalisée par l’entité MeNB. Le trafic (UP : User Plane) est transmis à travers le lien X2 vers l’entité SgNB (Slave en-gNB) ;
  • option 3a : La création d’un bearer secondaire (SGC) s’effectue au niveau du cœur réseau (SGW) et le flux de données est transmis sur deux supports (bearer) complémentaires, l’un vers l’entité MeNB, l’autre vers l’entité SgNB ;
  • option 3x : La création d’un bearer est réalisée au niveau du cœur radio (SCG) et la séparation du bearer est réalisée par la station de base secondaire (SCG split bearer).

Figure 5 : Les options 3/7 vert à gauche, 3a/7a (en bleu), 3x/7x vert à droite du mode NSA

L’option 3x consiste à séparer le support DC au niveau de la station de base gNB. L’entité eNB peut conserver un ou plusieurs bearer avec le cœur de réseau (MCG bearer) ou ne gérer que la signalisation entre l’accès radio (eNB/en-gNb) et le cœur de réseau.

Dans le cas du split-bearer, les données sont distribuées ou dupliquées entre les deux nœuds radios. L’équilibrage de charge est réalisé de manière dynamique par le nœud d’ancrage (MeNB ou SgNB) en fonction du trafic, c’est-à-dire par l’entité PDCP du nœud d’ancrage (MeNB pour l’option 3 et SgNB pour l’option 3x).

Dans la suite, on appellera indifférent SgNb ou en-gNB.