Cours 3 – Niveau Master – Chap 2 (Part 1)

L’agrégation de porteuses sur les bandes licenciées et non licenciées

3.1. Principe d’agrégation de porteuses pour le LTE-Advanced

En théorie de l’information, le débit maximum de transmission à travers un canal de communication dépend de la bande de fréquence B utilisée et du rapport signal sur bruit (SNR : Signal Noise Ratio). Le théorème de Shannon-Hartley donne une limite maximale C pour bruit gaussien :

C=B.log2(1+SNR)

(la démonstration mathématique à partir de la théorie du signal se trouve facilement sur Internet)

La bande de fréquence B utilisée par le LTE est au plus égale à 20 MHz. L’agrégation de porteuses (Carrier Aggregation ou CA) permet d’atteindre des débits de transmission beaucoup plus rapides en augmentant la bande de fréquence.

L’agrégation de porteuse est une fonctionnalité qui est apparue avec le LTE-Advanced (LTE-A R.10), pour le mode duplex FDD ou TDD (Frequency Division Duplex, Time Division Duplex).

Avant la R.10, les terminaux de catégorie 1 à 5 étaient mono-porteuse sur une bande comprise entre 1.4 MHz et 20 MHz. Les premiers tests d’agrégation de porteuses ont été réalisés sur des terminaux de catégorie 4 et sur deux bandes de 10 MHz. Les terminaux de catégorie 6 sont disponibles depuis 2014, et permettent d’atteindre des débits de 300 Mbps (en DownLink DL) en supportant deux bandes de 20 MHz. Les terminaux de catégories 9 disponibles à la vente depuis 2015 supportent 3 bandes de 20 MHz, ce qui permet d’atteindre un débit de 450 Mbps. Les terminaux de catégories 4, 6 et 9 possèdent 2 antennes et supportent la modulation 64 QAM sur le lien descendant. Pour ces terminaux, une bande de 20 MHz correspond à un débit de 150 Mbps. En pratique, pour un opérateur qui disposerait un total de 45 MHz sur 3 bandes différentes pourrait proposer un débit maximal descendant de 337.5 Mbps avec ces catégories de terminaux.

On peut ainsi définir une première classification des catégories de terminaux en vente en 2017 en fonction du nombre de canaux de fréquences supportés :

Tableau 2.1. Catégories de terminaux définies dans la R.10 et R.11

Le LTE-Advanced étend l’agrégation de porteuses à 5 canaux, portant à 100 MHz la bande maximum. L’UE de catégorie 8 (également défini dans la R.10) supportera cette fonctionnalité.

Dans les R.10 et R.11, le nombre de porteuses pour le lien montant est inférieur ou égal au nombre de porteuses pour le lien descendant.

Dans la R.12, les UE peuvent réaliser de l’agrégation de porteuses en mode TDD et conjointement en mode FDD. La R.12 propose 80 combinaisons de deux porteuses et quelques combinaisons de trois porteuses.

La R.13 ajoute de nouvelles combinaisons de porteuses pour 2, 3, 4 et 5 porteuses et étend la combinaison avec les bandes WiFi. La R.13 a normalisé 492 combinaisons de porteuses pour l’agrégation de deux bandes, 248 combinaisons sur 3 bandes, 56 combinaisons pour 4 bandes et 2 combinaisons pour 5 bandes.

3.2. Mécanisme d’agrégation de porteuses

Le principe consiste à augmenter la bande utilisée par le mobile pour accroitre son débit, on nomme Component Carrier (CC) chaque bande agrégée. L’UE est connecté avec un seul eNb, l’eNb dispose de plusieurs bandes de fréquences contiguës ou disjointes.

Après avoir décrit les fonctionnalités de l’Agrégation de porteuses, nous allons maintenant étudier son mécanisme.

En mode de veille, l’UE écoute les informations émises par l’eNb (canal balise, paging) sur la bande de fréquence spécifique à la cellule. Si l’UE doit émettre ou recevoir des données, il doit passer en mode connecté (RRC Connected). L’UE pouvant exploiter plusieurs bandes de fréquences, on différencie la PCC (Primary Component Carrier) correspondant à la bande sur laquelle l’UE échange la signalisation NAS et les données avec l’eNb (PCell : Primary Cell) et le(s) SCC (Secondary Component Carrier) les bandes sur lesquelles l’UE échangent les données avec les autres cellules (SCell : Secondary Cell). Les paramètres de la cellule primaire et des cellules secondaires sont configurés au niveau RRC. Ainsi, la PCC est modifiée uniquement par une procédure de Handover et les SCC peuvent être dynamiquement activées et désactivées par des nouvelles requêtes RRC. Dans le cadre du CA, l’UE ne dispose que d’une seule connexion RRC avec l’eNb.

Figure 3.1. Impact de l’agrégation de porteuses sur l’interface radio

Toutes les SCC sont considérées comme des ressources de transmission additionnelles. Les couches Physique et la couche MAC sont les deux couches impactées par la CA (Figure 2.1), avec de nouvelles requêtes RRC :

  • La couche Physique réalise la transmission d’un bloc de transport (TB), la retransmission rapide des paquets erronés via le mécanisme HARQ est réalisée sur chaque CC.
  • L’allocation de ressources est réalisée sur le canal PDCCH. Dans le cas de l’agrégation de porteuses, soit le PDCCH de chaque cellule assigne les ressources pour sa cellule (self scheduling), soit un seul PDCCH assigne les ressources pour toutes les cellules (PCell et SCell). Ce scénario se nomme Cross Carrier Scheduling.

Figure 3.2. Séquencement avec et sans cross scheduling

La couche MAC multiplexe les données issues de la couche PDCP et RLC sur les différentes porteuses.

La signalisation relative à l’agrégation de porteuses est donc transparente pour le protocole de convergence des paquets de données (PDCP) et pour la couche de contrôle des liaisons radio (RLC).

L’UE doit en retour émettre un acquittement pour chaque HARQ. Dans la R.10, le lien étant asymétrique, l’UE doit pouvoir, sur le canal montant, transmettre les acquittements (ACK/NACK) de chaque HARQ ainsi que des mesures du lien radio (CQI, PMI, RI). Le PUCCH de format 3 permet de compiler les informations.

Concernant le lien montant, l’UE doit émettre ses données avec un temps d’avance (TA Timing Advanced) afin de compenser la durée du trajet de l’onde Radio et assurer ainsi une synchronisation avec la trame en réception de l’eNb. Lorsque l’UE réalise de l’agrégation de porteuse, les antennes de réception (RRH) peuvent être déportées (se référer au chapitre 1), et le temps de trajet n’est donc pas identique sur chacune des porteuses. Si la R.10 ne gère le TA que pour la Pcell, la R.11 permet d’appliquer des TA différents selon la bande de fréquence.

Les procédures liées aux supports (bearers) dans l’architecture CUPS

Avant de lire cet article, il est préférable d’avoir lu l’article précédent présentant l’architecture CUPS. Dans cet article nous allons voir les modifications apportées sur les protocoles d’établissement de support suite au découpage des entités SGW et PGW en deux parties (plan de contrôle et plan utilisateur).

I) Protocole de gestion des sessions et de handover

Le protocole de gestion de sessions a pour but d’ajouter, de modifier ou supprimer une entrée des tables de contextes au niveau des entités SGW et PGW  afin de permettre :

  • l’établissement du support par défaut ;
  • l’établissement du support dédié ;
  • la modification des caractéristiques du support
  • la désactivation du support

En cas de handover, sous la direction de l’entité MME, la table de contexte du SGW doit être modifiée afin de gérer le transfert de l’entité eNB source vers l’entité eNB cible.

Pour assurer la compatibilité avec les différentes évolutions du réseau opérateur, les entités fonctionnelles SGW-C et SGW-U doivent assurer les mêmes fonctionnalités.

Ainsi, concernant la gestion des sessions, les sous-fonctionnalités sont réparties de la manière suivante :

  • La gestion des supports (bearer) est sous la responsabilité des entités SGW-C ou SGW-U
  • L’allocation des identifiants de tunnels TEID est obligatoirement sous la responsabilité de l’entité SGW-C et optionnellement, l’entité SGW-C peut léguer cette fonctionnalité à l’entité SGW-U.
  • Le transfert des paquets est géré par l’entité SGW-U
  • Le marquage des paquets est géré par l’entité SGW-U

L’identifiant de tunnel TEID est unique pour chaque entité SGW-U, ce dernier est alloué lors de l’activation d’un support et supprimé lors de la désactivation du support.

En cas de handover de la station de base eNb source vers une station de base eNb cible sans changement d’entité SGW-U, l’entité fonctionnelle  SGW-C (qui est le contrôleur SDN) injecte une modification de règles de transfert à l’entité SGW-U via la requête Sx session modification request supportée par le protocole PFCP. La table de flux au niveau de l’entité SGW-U doit remplacer l’adresse IP de l’eNB source et l’identifiant de tunnel associé au bearer sur l’eNB source par l’adresse IP et le TEID correspondant de l’eNB cible (et ceci pour  tous les tunnels activés lors de la procédure de handover).

En cas de handover d’un eNb source vers un eNb cible avec changement d’entité SGW-U, l’entité fonctionnelle PGW-C (contrôleur SDN) doit en plus injecter une modification de règles (protocole PFCP)à l’entité PWG-U pour commuter le tunnel S5/S8 de l’entité SGW-U  vers l’entité SGW-U cible. Le message Sx session modification request transmis de l’entité PGW-C vers l’entité PGW-U contient l’identifiant du support (bearer ID), l’adresse IP de l’entité SGW-U cible et le nouvel identifiant de support TEID de l’entité SGW-U.

La procédure de handover se déroule en trois étapes :

  • Préparation des ressources radios entre l’entité UE et l’eNB cible
  • Modification de la table de contexte du SGW-U provoquée par l’échange suivant
    • SGW-C vers SGW-U: requête Sx session modification request
    • Après avoir transmis le dernier paquet PDU à l’entité eNB source, le SGW-U confirme la modification de sa table de flux
    • SGW-C U vers SGW-C: requête Sx session modification response
  • Une fois pris en compte le changement de chemin S1 path au niveau du SGW-U, il faut en informer l’entité eNB source :
    • SGW-C transmet au SGW-U un marqueur de fin de paquets (end marker packet)
    • SGW-U transmet à l’entité eNB source le marqueur de fin de paquets (end marker packet)
    • l’entité eNB source peut relâcher les supports radios avec l’entité UE.

Si le handover nécessite un changement de SGW-U, dans ce cas, la gestion du marqueur de fin de paquets (end marker packet) est sous le contrôle du PGW-C.

II) Protocole pour la fonction HLCom

Dans le cas de dispositifs IoT à latence élevée, l’organisme 3GPP a introduit des solutions de buffer étendu afin de conserver les données à transmettre aux dispositifs lorsque ces derniers ne sont plus joignables (EMM Registered mais à l’état dormant). Les données sont bufférisées au niveau du SGW jusqu’à ce que le dispositif soit de nouveau dans l’état idle ou connected.

Avec la séparation de l’entité SGW en plan de contrôle et plan utilisateur, la sauvegarde des données doit obligatoirement être supportée par l’entité fonctionnelle SGW-U et optionnellement par l’entité SGW-C.

Premier Cas :

Dans le cas où l’entité SGW-C support la capacité de sauvegarde des données (buffering capacity), lorsque le dispositif UE est dans l’état ECM_idle pour une durée eDRX ou PSM connue, l’entité SGW-C informe l’entité SGW-U (injection de règles) de ne plus transmettre les données à la station de base eNB mais de commencer à transférer les données vers l’entité SGW-C.

Lorsque l’entité UE passe à l’état ECM-CONNECTED, alors l’entité SGW-C met à jour les tables de flux du SGW-U avec l’identifiant TEID du eNB correspondant. Si des données ont été sauvegardées au niveau de l’entité SGW-C, alors les données sont encapsulées dans l’injection de règles Sx. L’encapsulation GTP-U permet à l’entité SGW-U d’identifier la connexion PDN et l’identité du support.

Deuxième Cas :

L’entité SGW-U conserve les données à destinations des dispositifs UE non joignable mais enregistrés sur le réseau.  Ainsi, lorsque le mobile UE passe à l’état en veille (ECM-IDLE), l’entité SGW-C est informée par le MME et doit à son tour en informer l’entité SGW-U par le message Sx session modification.  Dans ce deuxième cas, l’entité SGW-C décide que la bufferisation des données est à la charge de l’entité SGW-U et informe ce dernier. De plus, l’entité SGW-C demande à l’entité SGW-U d’être notifié ou non lorsque le premier paquet en provenance du PDN et à destination du dispositif UE est transmis à l’entité SGW-U

Ainsi, lorsque le premier paquet à destination du dispositif UE est transmis à l’entité SGW-U, ce dernier doit informer le contrôleur SGW-C par le message Sx reporting message ou non. A la réception de ce message, l’entité SGW-C décide d’informer ou non l’entité MME en transmettant la requête Downlink Data Notification.

Lorsque le dispositif UE passe à l’état ECM-CONNECTED, l’entité MME informe l’entité SGW-C et ce dernier notifie l’entité SGW-U via l’interface Sxa en indiquant l’identifiant de tunnel de l’eNB (ou éventuellement le RNC/SGSN).  Les données sont transmises de l’entité SGW-U à l’eNB (ou RNC ou SGSN) et en cas de la mobilité du dispositif UE sur un autre SGW-U, les données sont transmsises de l’entité SGW-U source (l’entité qui a bufferisé les données) vers l’entité SGW-U cible.

III) Les Procédures Sx Sessions Management

Les procédures Sx Sessions Management permettent de contrôler les fonctionnalités des entités fonctionnelles du plan de transport. Le contrôleur peut créer, mettre à jour, ou supprimer les contextes de sessions Sx, c’est-à-dire les paramètres de contextes concernant une connexion PDN pour le support par défaut et pour le support dédié.

Figure 1 : La procédure d’établissement de contexte

Une fois le contexte crée pour une connexion PDN, il est possible de modifier les caractéristiques du contexte par la procédure Sx Session Modification Procedure.

Pour désactiver le contexte, la procédure se nomme Sx Session termination procedure.

Nous allons illustrer la procédure sur une demande d’attachement d’un mobile UE. On suppose que la demande s’effectue sur le MME défini par l’identité GUTI conservé par le mobile UE mais de par le déplacement du mobile UE, on suppose que le mobile UE est sous la couverture d’une cellule connectée à une entité SGW (nommée nouveau SGW) différente de l’entité SGW (nommée ancien SGW) sur lequel le mobile UE était connecté avant le détachement.

On allume  le mobile, le SGW-U ayant été modifié, alors :

  • Au cours de la procédure d’attachement, la modification du SGW source au SGW cible nécessite de supprimer les tables de flux au niveau des entités SGW-U et PGW-U. Ainsi, les entités old SGW-C et old PGW-C exécutent la procédure Sx Session termination
  • Lors de la requête PDN connectivity, la table de flux au niveau du SGW-U et PGW-U doit être fournie. Ainsi, les contrôleurs SDN SGW-C et PGW-C injectent les règles par la procédure Sx Session Establishment.

Nous allons découper le call flow en deux parties :

Première partie

  • Procédure d’établissement du lien radio
  • Demande d’attachement, authentification et mise en sécurité

Deuxième partie

  • Suppression du contexte sur l’entité Old SGW
  • Création du support avec le nouveau SGW

    Figure 2 : La première partie de demande d’attachement

    Figure 3 : La procédure d’établissement de support

 

LTE-Advanced (4G+) sera prochainement commercialisé

LTE-Advanced

Le LTE-Advanced, dénommé aussi LTE-A, a été défini dans la R10 (démarré en octobre 2009) et prévoyait une augmentation du débit en utilisant plusieurs porteuses (agrégation de porteuses). En 2013, les équipementiers expérimentaient les premiers smartphones (cf article S4-LTE-A) et depuis quelques mois les opérateurs Français (notamment Bouygues, Orange et Free) expérimente le LTE-A.

L’idée à déjà été exploitée en 3G avec la dénomination Dual Carrier et s’appuie sur le fait que le débit dépend de la bande de fréquence utilisée : Plus la bande est importante, plus le débit est élevé.

Concernant le LTE, celui-ci exploite une bande de 20 MHz au maximum ce qui permet d’avoir un débit de 150 Mbit/s. En agrégeant 5 porteuses, la bande totale atteint 100 MHz, le débit peut donc être 5 fois plus élevé. En augmentant le nombre d’antennes (MIMO) au niveau de l’émetteur et du récepteur et en améliorant la modulation radio (jusqu’à 256 QAM) lorsque les conditions radios sont excellentes (smartphone proche de l’antenne), le débit peut dépasser le Gbps.

Le LTE-A est défini pour atteindre des débits descendants de 1 Gbps. Son successeur, Le LTE-B, selon Huawei pourrait atteindre plusieurs dizaines de Gbps.

Figure 1

Expérimentation en France de la 4G+

En février, Bouygues dégainait en annonçant le réseau 4G sur Bordeaux et Lyon à partir de Juin 2014 en profitant du re-farming pour avoir la bande suffisante. Orange répliquait en annonçant l’expérimentation du LTE-A sur Bordeaux (pour un débit de 300 Mbps et une bande de 2*20 MHz).

Pour profiter du LTE-A, il faudra un nouvel abonnement (en augmentant la volumétrie de votre abonnement) mais également un smartphone compatible (évolution logicielle)

Free a utilisé un drone pour expérimenter la couverture en 4G+. Cela rappelle l’expérimentation Globalstar et Iridium avec des satellites en basses altitudes (LEO), enfin lisez bien la note du bas d’article (et regardez la date de publication).

Image

Après ce coup de buzz de ZDnet (qui publie de très bons articles), retenez l’arrivée de la 4G+ pour Bouygues et Orange en Juin 2014, et SFR à partir de septembre.

S4-LTE Advanced en préparation

LTE-Advanced

Dans un précédent article, je présentais les différentes évolutions attendues ces prochaines années pour accroitre le débit. Le LTE-Advanced, en exploitant une bande de 100 MHz (agrégation de canaux) permettra d’atteindre un débit de 1 Gbps, s’approchant ainsi des performances de la Fibre Optique.

On apprend depuis peu que Samsung s’est lancé dans la fabrication du premier terminal S4-LTE-A. On peut supposer la sortie de l’appareil pour février 2014 à Barcelone (les plus optimistes espèrent la sortie en fin 2013).

Les principales évolutions concernent encore le débit, mais l’évolution de la norme propose aussi des fonctionnements optimum dans un environnement multi-radios (WiFI, SuperWiFi, 2G, 3G), et des améliorations sur la couverture par l’ajout de relais;

Au niveau du réseau de l’opérateur, les évolutions concernentle Gigabit Ethernet synchrone dans le backhaul de l’opérateur.Je rappelle que l’architecture dorsale du réseau IP s’appuye sur un réseau SDH, né de la commutation de circuit. SDH étant un système de transport Synchrone (Synchronous Digital Hierarchy), mais la comutation de circuit n’est pas optimal pour la DATA, raison pour laquelle le réseau éthernet replacer le transport SDH.

Revenons sur le smartphone 4G LTE-A, l’annonce montre que Samsung est à la pointe en terme de smartphone, mais le marché est il prêt?

En France, on peut espérer le LTE-A en 2015, mais au Japon (NTT DoCoMo) , les premières antennes devraient être installées en 2014.

Etonnament, en décembre 2012 et Mai 2013, c’est aussi NTT DoCoMo et Samsung qui ont fait le buzz en annoncant la 5G sur la fréquence de 11 GHz ou 28 GHz.

Je n’ai pas relayé l’information, car la première difficulté à résoudre est la portée des ondes à cette fréquence, et que le choix de la fréquence ne fait pas une norme;

Par contre, pour ceux qui aimeraient savoir quelles évolutions peuvent être annoncees pour la norme 5G, je vous propose de vous intéresser à la modulation multi-porteuses FBMC, au réseau Ad’Hoc (le mobile permettant de relayer le signal et dans ce cas l’idée d’un fonctionnement à 11 GHz ou 28 Ghz est plus réaliste), au codage conjoint (et s’intéresser aussi à la norme HEVC pour la vidéo permettant de réduire le débit de la transmission vidéo en conservant une bonne qualité QoE), à la radio-cognitive, et au relais.

Ce sont des pistes, à suivre …

Du LTE vers le LTE-B

Du LTE au LTE-B

Les offres commerciales sur la 4G vous permettent de bénéficier d’un débit crête de 100 Mbps, mais à terme c’est 1Gbps puis 3Gbps qui est visé.

Les opérateurs mettent en place les équipements actifs pour la 4G, à savoir :

  • Des antennes avec un contrôleur imbriqué, il s’agit des eNb. Celles-ci sont raccordées au réseau de l’opérateur via la fibre optique, ce qui permettra de faire passer au moins du 100 Mbps et dans quelques années pouvoir faire passer plusieurs Gbps de données. (jusqu’à 40 Gbps).  La liaison est réalisée en Gigabit Ethernet, il faut se rappeler que la 4G est un réseau tout IP (de bout en bout).
  • Le coeur réseau est composé de deux parties séparées :
    • Signalisation
      • Gère la mobilité des abonnées, le rattachement des abonnés sur le réseau. Il s’agit du MME
      • Une base de données permettant entre autre d’authentifier l’abonné, de consulter l’abonnement des abonnés, de chiffrer les communications. Il s’agit du HSS
      • Une politique de tarification, qui permet de gérer l’accès au réseau de données (PDN) en fonction du forfait de l’abonnée. Il s’agit du PCRF.
    • Transport :
      • Un équivalent de la borne d’accès WiFI pour les mobiles. Il s’agit d’un point d’ancrage nommé S-GW, lequel est le point de contact d’un mobile (UE) sur le réseau de l’opérateur et à travers lequel tous les paquets de données seront transmis.
      • Une passerelle nommée P-GW pour passer sur un réseau de données (PDN) non mobile ou d’un réseau mobile d’un autre opérateur. Pour le PDN, il oeut s’agir d’un réseau WAP, MMS, IP, IMS.

Cette infrastructure concerant le coeur réseau se veut pérenne pour les 10 années à venir. Il faudra éventuellement re-dimensionner certains S-GW pour s’adapter à l’augmentation de trafic, mais la création de pool et de lien MME-SGW permet àl’opérateur de pouvoir s’adapter au nombre de sessions simultanées et équilibrer la charge totale de tous les utilisateurs à un instant donnée. Le MME devra aussi être mise à jour logiciellement, mais pas de nouvel équipement à acheter pour le coeur réseau.

 

Les évolutions ne porteront donc que sur les eNb. Ceux-ci devront s’adapter aux améliorations propsosées par les normes (Release 10 à Release 12) pour permettre une augmentation du débit. L’antenne communique avec  votre mobile, chaque nouvelle norme imposera une amélioration de votre mobile. Les abonnées devront donc choisir le dernier portable pour atteindre les performances désirées.

 

Les performances et comment y parvenir

Le débit est proportionnel à la bande de signal utilisé pour une communication. Plus la bande est importante, plus le débit sera élevé. Aujourd’hui le LTE (4G) exploite une bande de 20 MHz. Via des techniques de modulation (64 QAM), le débit pourra atteindre 100 Mbps.

En 3G, SFR communique sur le DC-HSPA (Dual Cell), permettant d’améliorer le débit par 2 en utilisant 2 porteuses. Pour le LTE-Advanced (nommé LTE-A), se principe sera repris jusqu’à 5 porteuses (Agrégation de porteuses). La bande sera donc de 100 MHz. Pour atteindre un débit de 1 Gbps, la communication se fera sur plusieurs antennes en même temps. Il s’agit du MIMO. La norme prévoit jusqu’à 8 mini-antennes en émission et réception.

Un prochain article décrira plus en détail la partie radio, et illustrera cela par des figures.

De nouvelles améliorations sont proposées pour le LTE-B, mais nous y reviendrons aussi dans un prochain article.