Cours 2 – Niveau Master (Chap 1 – Part 3)

Les Modes de transmission

2.3 LTE et MIMO

2.3.1 Chaîne de transmission dans le sens descendant.

La couche physique du LTE se décompose en sous-bloc afin de répartir les flux d’informations issues de la couche MAC en bloc de transport jusqu’au mappage OFDM transmis sur chaque antenne.

Le synoptique de la chaine de transmission est décrite à la figure 2.10.

Figure 2.10. Chaîne de transmission MIMO

Afin de détailler le rôle de la chaîne, nous allons séparer l’étude en trois sous-parties :

  • Description de la chaîne entre les mots de code (codeword) aux couches spatiales
  • Description de la matrice de Précodage et association avec les modes de transmissions
  • Affectation aux ressources spectrales : Association du signal de référence au port d’antenne.

2.3.1.1 Chaîne de transmission du mot de code aux couches spatiales

A chaque TTI, la couche MAC délivre un ou deux bloc de transport (de taille TBS)

Un code CRC (cyclic redundancy check) de 24 bits est rajouté au transport bloc. L’objectif est de détecter une erreur de transmission. Le code CRC est le reste de la division euclidienne du transport block par le générateur  G exprimé par l’équation suivante.

La séquence binaire est ensuite segmentée en bloc de codage. Un CRC de 8, 16 ou 24 bits est rajouté à chaque bloc de codage avant d’être codé par un turbo-code ou un code convolutif. Le Turbo code utilise deux entrelaceurs dont la taille minimum est de 40 bits et la taille maximum est de 6144 bits (la norme propose 188 tailles différentes). Les codes bloc ont donc une taille comprise entre 40 bits et 6144 bits.

Le turbo code a un rendement de 1/3, le signal est ensuite poinçonné ou répété afin d’adapter la taille du flux de bits de sortie au débit désiré.

Le flux de bits ainsi obtenu se nomme codeword ou mot de code.

Figure 2.11. Couche Physique LTE

Le mot de code est ensuite embrouillé par une séquence pseudo-aléatoire de Gold (scrambling) et modulé suivant la modulation QAM définie par la couche MAC. La séquence de Gold est calculée en fonction de l’identité de la cellule, et avec l’identifiant RNTI de l’UE pour les canaux PDSCH, PUSCH et PUCCH. Ainsi, le récepteur peut séparer les mots de code provenant de cellules différentes dans le sens descendant et les mots de code provenant d’UE différent dans le sens montant et d’un même UE dans le cadre du MIMO.

Les mots de blocs embrouillés et modulé sont issus de la segmentation du bloc de transport ou des blocs de transport et constituent les sources d’entrées du bloc MIMO. On numérote par 0 et 1 les mots de code issus des blocs de transport.

En R.8, dans le sens descendant, les mots de code peuvent être transmis sur 1, 2 ou 4 antennes physiques. Dans le cas d’un retour d’information, l’eNb utilise l’information du rang de la matrice de propagation (RI) pour définir le nombre de couches spatiales utilisable par l’UE. Le nombre de couches spatiales est inférieur ou égale au RI. Le bloc Layer Mapper a pour objectif d’associer le ou les mots de codes au nombre de couches spatiales. Le nombre de couche spatiale est donc de 1, 2 ou 4 pour la R.8 et jusqu’à 8 antennes à partir de la R.10.

Figure 2.11. Layer Mapper

La figure 2.7 est un exemple de mise en correspondance de deux codewords vers 4 couches spatiales. Cependant, les différentes combinaisons résumées dans la table 2.7 existent.

Table 2.7. Associations entre mots de code et couches spatiales pour le sens descendant

SM : Spatial Multiplexing et DT : Diversity Transmission

2.3.1.2 Les matrices de précodage et les modes de transmission en DL

Après avoir disposé les mots de codes sur les différentes couches spatiales, chaque couche spatiale est précodée par des coefficients complexes en fonction du mode de transmission (TM) et transmis vers des ports d’antennes. Nous reviendrons sur la notion de port d’antenne ultérieurement et sur l’association entre les ports d’antennes et les antennes physiques.

Le traitement du signal consiste à convertir L couches spatiales vers N ports d’antennes en multipliant les symboles d’entrées par des coefficients complexes (matrice de précodage de taille N x L).

Le précodage s’appuie sur une matrice extraite d’un livre de code (codebook). Le livre de code est connu par l’UE et l’eNb et dans le cas de l’estimation du CSI avec retour vers l’émetteur, l’UE informe l’eNb de la matrice de codage la plus adaptée parmi la liste définie dans le livre de code. L’UE renvoie le numéro de la ligne correspondant à la matrice et cette information est portée par le PMI.

Dans le sens descendant, 10 modes de transmission ont été définis :

  • TM1 à TM7 ont été définis dans la R.8.
  • TM8 a été défini dans la R.9
  • TM9 a été défini dans la R.10
  • TM10 a été défini dans la R.11
  • TM9 a évolué dans la R.13 pour gérer les UE dédiés aux objets connectés.

TM1 : Single Transmission antenna.

Dans le cas de la transmission SISO, une seule antenne est utilisée à l’émission et une seule en réception.

TM2 : Transmit Diversity

La diversité de transmission utilise :

  • pour deux antennes d’émission : le codage SFBC (Space Frequency Block Coding). Il s’agit du codage Alamouti exploité en fréquence et non en temps (ce qui le différencie du STBC). La figure 2.4 illustre le code Alamouti en temps, on retranscrit le code dans le domaine fréquentiel :

En écrivant :

Alors, on obtient :

La matrice de précodage est donc (cf. section 6.3.4.3 3GPP TS 36.211) :

  • Pour 4 antennes  d’émission : le codage FSTD (Frequency Switched Transmit Diversity) : 4 symboles sont découpés en 2 paires, chaque paire est transmise sur deux antennes comme le SFBC sur des RB différents (frequency switched). Chaque ligne de la matrice correspond un port d’antenne :

est le code en temporel. Lorsqu’on retranscrit en fréquentielle, on obtient :

Se référer à la section 6.3.4.3 3GPP TS 36.211

Les canaux PDSCH, PDCCH et PBCH utilisent la diversité de transmission.

TM 3 – Open loop spatial multiplexing with CDD (Cyclic Delay Diversity)

Le multiplexage spatial en boucle ouverte se base sur le choix d’une matrice de précodage au niveau de l’émetteur sans connaissance de l’estimation du canal. En général, ce mode est choisi lorsque l’UE se déplace rapidement (scénario de haute mobilité) et le temps de calcul de l’estimation du canal (PMI) est supérieur au temps de cohérence du canal. Le RI est néanmoins transmis à l’eNb mais pas le PMI.

Ce mode supporte le multiplexage spatial de 2 ou 4 couches transmises simultanément sur 2 ou 4 antennes. La matrice de précodage utilisée en émission est connue par le récepteur et se calcule par le produit de trois matrices : Une matrice  de taille N x L et deux matrices carrées D et U de taille L x L : D.U

La matrice W distribue le signal provenant de chaque couche vers les P ports d’antennes, la matrice D permet d’avoir un décalage alors que la matrice U distribue l’énergie sur chacun des ports d’antennes.

Avec :

Table 2.8. Bibliothèque de matrices de précodage pour deux ports d’antennes

Afin de connaitre la position des colonnes constituant la matrice de précodage W, on se réfère à la spécification TS 36.211 Table 6.3.4.2.3-2 (cf. table 2.9).

Table 2. 9. Bibliothèque Tableau de codes pour la transmission sur 4 antennes en DL

Pour l’index 0 et pour deux couches spatiales, la matrice de précodage est constituée de la colonne 1 et de la colonne 4 de la matrice w0, laquelle se calcule à partir du vecteur u0.

Pour le mode de transmission TM3, 4 antennes, l’index est 12, 13, 14 et 15.

Les matrices D et U sont définies dans la spécification 3GPP TS 36.211 (Table 6.3.4.2.2-1) :

Table 2.10. Matrice de précodage : Matrices U et D

CDD représente la diversité temporelle : Un bloc est retransmis avec un retard spécifique constant représenté par U

TM3 : Transmit Diversity

Le TM3 nécessite uniquement l’information RI. Le PMI n’est pas transmis. Dans le cas où le rang de la matrice est unitaire, le mode TM3 est utilisé pour la diversité d’émission

Dans ce cas, la matrice de précodage est identique à la matrice de précodage du mode TM2

TM 4 – Multiplexage spatiale en boucle fermée (CSI transmis à l’émetteur)

Ce mode supporte le multiplexage spatiale SU-MIMO jusqu’à 4 couches spatiales multiplexées jusqu’à 4 antennes. L’estimation du CSI est réalisée à partir du CRS ce qui signifie que le retour de l’UE n’exploite pas de pilote dédié à l’UE.

La matrice de précodage s’appuie

  • Sur la table xx.8 pour un utilisateur transmettant un ou deux couches spatiales sur 2 ports d’antennes.
  • Sur la table xx.9 pour un utilisateur transmettant une à 4 couches spatiales sur 4 ports d’antennes.

Dans le TM4, les mêmes ressources temps fréquentielles sur les différentes antennes sont transmises vers un seul UE

TM 5 – MU-MIMO

Ce mode est similaire au TM4, il supporte la fonction de multiplexage spatial en boucle fermée de deux utilisateurs (MIMO 2×2) ou de 4 utilisateurs (MIMO 4×4). La matrice de précodage est extraite à partir des mêmes tables.

Dans le TM5, les ressources temps fréquentielles sur les différentes antennes sont transmises vers plusieurs UE

TM6 : Multiplexage spatial en boule fermé en utilisant qu’une seule couche de transmission.

Ce mode est un cas particulier du TM4 pour lequel le rang de la matrice (RI) est 1. L’UE estime le canal et retourne l’index PMI de la matrice de précodage la plus adaptée.

Dans le cas de deux antennes, la matrice de précodage est définie par la table xx.8 (1ère colonne) et par la table xx.9 (1ère colonne) dans le cas de 4 antennes.

TM7 : Faisceau de voie (Beamforming)

Le mode TM7 peut être vu comme le mode TM6 en boucle ouverte. Le faisceau de voie est dédié vers un UE, l’estimation du canal s’appuie de la part de l’UE sur le signal de reference UE-specific RS. Ainsi, les données et l’UE-RS sont précodés par la même matrice.

TM8 : Faisceau de voie sur deux couches

La R.8 a spécifié le beamforming sur une seule couche (TM7). La R.9 a specifié le beam-forming sur 2 couches. Ainsi, le TM8 permet de combiné le beamforming avec un multiplexage spatial pour un ou plusieurs utilisateurs. L’utilisation de deux couches permet également de faire du SU-MIMO ou du MU-MIMO.

TM9 : Faisceau de voie sur deux couches

La R.10 a spécifié le TM.9 pour étendre les configurations du MIMO sur 8 antennes. Ainsi, le SU-MIMO et le MU-MIMO sont définies dans le TM9 (comme une extension du TM4 et du TM8)

Pour pouvoir exploiter 4 antennes supplémentaires, la R.10 propose 8 signaux de références nommés CSI-RS et de nouvelles matrices de précodage calculées à partir des mots de codes existants : W=W1W2  ou :

  • W1 est une matrice de précodage diagonale large bande permettant de définir la sélection de voies
  • W2 change la phase du signal sur chaque polarisation de l’antenne

TM 10

Le TM10 est similaire au TM9 mais les antennes utilisées peuvent être sur des eNb différents. Le TM10 supporte la technologie COMP

xx.3.1.3 Les matrices de précodage et les modes de transmission en UL

La R.8 et la R.9 ne spécifient pas la possibilité de faire du MIMO sur le sens montant.

A partir de la R.10, les UE supportent le MIMO jusqu’à 4 couches, il n’existe donc que deux modes de transmission en Uplink :

TM1 : SISO

TM2 : Closed loop spatial Multiplexing

2.3.2 Les mappage sur les éléments de ressources

Le dernier bloc de la chaîne de transmission correspond à l’association entre les ports d’antennes et les antennes physiques.

Les ports d’antennes sont des entités logiques qui se définissent par les signaux de références qu’ils transportent. La table xx.11 fait l’association du port d’antenne et du signal de référence.

Table 2. 11. Association Signaux de références et port d’antenne pour le DL

Signaux de références CRS

Dans le chapitre sur la structure de la trame radio LTE, nous avons vu que les signaux de références CRS sont insérés dans chaque bloc de ressource (RB) émis par la station de base. L’UE doit estimer toute la bande du canal à partir de la connaissance du CRS et même en cas de forte mobilité (120 km/h à 250 km/h).

Les signaux de références CRS sont insérés dans tous les RB de la bande avec un motif répétitif.

Pour un préfixe cyclique normal, le mappage est effectué sur le premier et cinquième symbole OFDM de chaque slot pour les ports d’antennes 0 et 1 et sur le deuxième symbole OFDM pour les ports d’antennes 2 et 3.

Au niveau fréquentiel, les CRS sont espacés de 6 sous porteuses sur chaque port d’antenne et peut prendre une  position parmi les 6 positions possibles. La position en fréquence du CRS dépend de l’identité physique PCI de la cellule.

De plus, les éléments de ressource utilisés pour le port d’antenne p0 ne doivent pas être utilisés pour le port d’antenne p1, et vice versa pour éviter les interférences entre antenne.

Ainsi, la figure 2.13 présente le mapping dans le cas du préfixe normal (7 symboles par slot) pour une, deux et 4 antennes

Figure 2. 13. Mappage des CRS dans les ports d’antennes

L’allocation de ressources des données transmises est signalée dans le canal physique PDCCH par l’information         .

La table 2.12 propose une synthèse entre le TM et les ports d’antennes.

Table 2. 12. Correspondance entre le TM et les ports d’antennes

 

Cours 2 – Niveau Master (Chap 1- Part 1)

Les Modes de transmission

2.1. Principe Général

Le signal reçu par une antenne est déformé par le canal de propagation, c’est-à-dire par l’environnement qui sépare l’antenne d’émission à l’antenne de réception. D’une part, le canal atténue la puissance du signal émis en fonction de la distance, mais d’autre part, les transmissions sur le canal mobile dans des environnements plutôt urbains (présence de nombreux bâtiments) ou intérieurs (murs, meubles,. . .) provoquent des multi-trajets (équivalent à de l’écho) ce qui génère en réception en évanouissement du signal.

Figure 2.1. Atténuation du signal et évanouissements

On distingue :

  • les évanouissements à moyenne échelle, dont l’origine est la présence de zones d’ombre, influent sur la distribution de la puissance moyenne reçue. Cette puissance est sensible aux paramètres suivants : Hauteur des antennes, fréquence du signal et topologie de l’environnement (immeubles, relief…).
  • les évanouissements à petites échelles provoquent une variation rapide du signal reçu. Cette variation est importante sur des faibles distances (il suffit de déplacer l’UE de quelques centimètres pour gagner ou perdre plusieurs dB), sur des faibles temps (en fonction du temps de cohérence du canal) et sur des faibles bandes de fréquence (en fonction de la fréquence de cohérence du canal). Les principales sources d’évanouissement sont les perturbateurs entre l’émetteur et le récepteur créant différentes interactions sur l’onde comme la réflexion, la réfraction, la diffraction,  la diffusion.

Figure 2.2. Propagation en milieu exterieur (urbain) : Outdoor

Comme le montre la figure 2.1, les multi-trajets provoquent en réception une sommation constructive ou destructive du signal. Pour contrer les effets du canal, le récepteur chercher à estimer le canal, c’est-à-dire à lui donner une représentation mathématique : un multi-trajet est un retard et une atténuation. Si le récepteur est en mesure de représenter le canal de propagation par une fonction mathématique (comme un filtre à réponse impulsionnel fini), il suffit de calculer la fonction inverse du canal pour récupérer le signal émis.

L’estimation du canal est simplifiée par la connaissance d’une séquence d’apprentissage aussi nommée séquence pilote : l’émetteur émet une séquence connue par le récepteur. Ce dernier compare le signal reçu avec le signal connu pour estimer le canal. Le LTE utilise des signaux de références, que nous verrons ultérieurement. Il existe d’autres techniques pour identifier le canal de manière aveugle.

Le modèle du canal n’est cependant pas inversible et de plus, est sujet au bruit. Afin de remettre en forme les signaux modulés qui ont été modifiés par le canal de propagation, on cherche à estimer le modèle inverse du canal. Il s’agit de l’égalisation du canal.

Il existe plusieurs techniques d’égalisation comme la technique de retour à zéro (ZF : Zero Forcing) qui a pour objectif de converger vers 0 l’interférence inter symbole (aux instants de décision) ou la technique MMSE (Minimum Mean Square Error) qui a pour objectif d’estimer le canal pour avoir une puissance d’erreur moyenne la plus faible possible entre les mesures et le modèle.

Les imperfections du canal influent principalement sur deux critères de performances. Les critères de performance se nomment KPI  (Key Parameter Indicator). Le premier indicateur est la capacité qui s’exprime par le débit maximal supporté par le canal (notion de Shannon). Le deuxième indicateur est la probabilité d’erreur (TEB): Il s’agit de prédire la probabilité que le symbole ou le bit émis soit faux. Plus cette probabilité est faible et meilleur est le système.

La technique du MIMO (Multiple Input Multiple Output) permet d’améliorer le KPI. Le MIMO est basé sur plusieurs antennes en émission et plusieurs antennes en réception.

Figure 2.3. Schéma MIMO

On représente le canal de propagation par une matrice H de dimension, chaque coefficient i,j de la matrice représente le gain du canal de l’antenne i vers l’antenne j :

H étant une matrice rectangulaire, la diagonalisation de la matrice H se fait par la méthode de décomposition en valeurs singulières ce qui permet d’écrire H sous la forme suivante :

Avec U , une matrice unitaire de dimension nR x nR., \Sigma la matrice diagonale de dimension nR x nT à coefficients \lambda_k réels positifs ou nul et  V* la matrice adjointe à V, V matrice unitaire de dimension nT x nT. Une matrice unitaire est une matrice telle que UU*=U*U=I, I est la matrice identité.

La matrice \Sigma représente le lien du canal entre l’antenne d’émission i et l’antenne de réception i, on se ramène donc à un système équivalent à n SISO, avec n le rang de la matrice H. Le traitement du signal consiste donc à précoder le signal d’entrée par une matrice V et à coder le signal reçu par les nR antennes par la matrice adjointe de U.

On peut aussi calculer les coefficients de la matrice H \lambda_k à partir de la matrice carrée H.H*. Dans ce cas, la diagonalisation de la matrice carrée H.H* est constitué du carrée des coefficients de la matrice H \lambda_k.

2.1.1 Diversité spatiale : Réduire le TEB

Pour combattre ces fluctuations rapides du signal et réduire le TEB (ce qui revient à dire améliorer la robustesse face au canal), une solution complémentaire à l’égalisation consiste à introduire de la diversité. La diversité est une technique utilisée pour combattre l’évanouissement. Le principe consiste à transmettre plusieurs fois le même signal soit à des instants différents (diversité temporelle), soit sur des bandes de fréquences différentes (diversité fréquentielle), soit avec une polarisation différente (polarisation verticale ou horizontale de l’onde),  soit sur des points d’émission différents (diversité spatiale).

La diversité spatiale nécessite au moins deux antennes à l’émission, on parle alors de système MISO (Multi Input Single Output) pour la diversité de transmission ou deux antennes en réception, on parle alors de système SIMO (Single Input Multiple Output) pour la diversité en réception. Mais on peut aussi apporter de la diversité spatiale en émission et en réception avec un système composé de plusieurs antennes à l’émission et plusieurs antennes à la réception. On parle alors de système MIMO (Multi Input Multiple Output).

A titre d’exemple, pour améliorer le signal reçu par deux antennes en réception, il est possible de combiner le signal reçu de chaque antenne comme le montre la figure 2.4 ou plus simplement de sélectionner l’antenne dont le SNR est le meilleur.

Figure 2.4. Recombinaison du signal reçu par deux antennes : Diversité en réception

Le signal transmis étant unique, la recombinaison au niveau du récepteur ne peut être efficace que si les deux signaux reçus ne sont pas corrélés.

Lorsqu’on utilise plusieurs antennes, que ce soit à l’émission ou à la réception, il est nécessaire de séparer les antennes d’une distance environ égale à une demi-longueur d’onde (de l’ordre de 0.45  à 0.5 de la longueur d’onde). En respectant cette contrainte spatiale, le trajet subi par chacune des ondes est indépendant du trajet des autres ondes.  Ainsi, le signal reçu par l’antenne est affecté par un bruit gaussien et par des évanouissements différents car chaque signal reçu aura subit des trajets multiples différents.

Cependant, transmettre des données simultanément dans la même bande de fréquence génère des interférences en réception. Il est donc nécessaire d’apporter un traitement aux données avant l’émission afin d’orthogonaliser les flux.

A titre d’exemple, pour un système MIMO 2×2, Alamouti propose un système de codage spatio-temporelle : Soit s1, et s2 deux symboles à transmettre pendant une période 2.T. Au lieu de transmettre s1 sur l’antenne 1 et s2 sur l’antenne 2, on transmet :

  • Sur l’antenne 1 : s1 pendant T et -s2* pendant T ( est le complexe conjugé de  s2)
  • Sur l’antenne 2 : s2 pendant T et s1* pendant T

La représentation mathématique est la suivante :

c2 est une matrice orthogonale (en considérant les vecteurs u1 et u2 extraits de chaque ligne ou de chaque colonne, le produit scalaire  est nul).

Le récepteur estime le canal de propagation et recombine les échantillons reçus. Les signaux recombinés y1 et y2 ne dépendent respectivement que de s1 et s2. Le code d’Alamouti découple donc les symboles mais en contrepartie, on ne gagne pas en débit puisqu’on transmet les deux symboles sur un instant 2T. Le code d’Alamouti (nommé aussi STBC : Space-Time Block Code) permet donc de faire de la diversité spatiale en émission.

Tarok a généralisé le code d’Alamouti pour un système de dimension supérieure à 2×2 (nommé OSTBC : Orthogonal STBC) et a proposé un autre type de code prenant en compte la modulation sur les antennes émettrices. Il s’agit des codes spatio-temporels en Treillis ou Space-Time Trellis Code (STTC).

Le synoptique est le suivant :

Figure 2.5. Diversité spatiale par le code d’Alamouti (STBC) : Diversité en émission

2.1.2 Multiplexage spatiale en boucle ouverte : Augmenter la capacité

Au lieu d’exploiter la diversité du signal en transmettant la même information, il est possible de découper l’information en plusieurs flux et de transmettre chaque flux sur une antenne à l’émission vers une antenne en réception. Ainsi, en exploitant les deux réseaux d’antennes à l’émission et à la réception de manière coopérative, il est possible d’augmenter le débit de transmission (la capacité). On parle alors de multiplexage spatial : la largeur de bande est inchangée mais l’efficacité spectrale est augmentée par la dimension des antennes (exemple d’un système MIMO 4×4 : 4 antennes à l’émission et 4 antennes à la réception). Le multiplexage spatial peut être mono-utilisateur, on parle de SU-MIMO (Single User MIMO) ou MU-MIMO (multi-utilisateur). Dans le cas du SU-MIMO, plusieurs flux d’informations sont transmis sur les mêmes ressources en temps et en fréquence vers un seul utilisateur. Dans le cas du MU-MIMO plusieurs flux sont transmis simultanément sur les mêmes ressources en temps et en fréquence mais pour des utilisateurs différents.  On peut aussi faire du MU-MIMO en affectant plusieurs antennes par utilisateurs, par exemple pour deux  2 UE possédant 2 antennes et un eNb qui possède 4 antenne peut transmettre en même temps et sur la même bande de fréquence 2 flux vers l’UE 1 sur deux antennes différentes et 2 flux vers l’UE2 sur les deux antennes restantes.

Le SU-MIMO améliore le débit de l’utilisateur, le MU-MIMO améliore la capacité de l’eNb.

Au niveau du récepteur, le détecteur optimal est basé sur le maximum de vraisemblance (ML) lequel nécessite une charge de calcul élevé lorsque le nombre d’antennes et la taille de la constellation sont grands. Il existe d’autres algorithmes sous-optimaux basés sur le ML et le codeur à retour de décision V-BLAST : le symbole de l’émetteur le plus favorisé (possédant le meilleur TEB suivant le critère considéré) est démodulé en premier. Sa contribution au vecteur reçu r est ensuite annulée, ce qui augmente le SNR sur les autres émetteurs (à chaque bonne décision). Cette étape est répétée jusqu’au dernier émetteur, le moins favorisé.

Le débit théorique maximum est alors défini par la formule suivante :

2.1.3 Connaissance du canal à l’émission : CSI (Channel State Information)

Les deux techniques présentées précédemment s’appuyait sur la connaissance du canal (CSI) au niveau du récepteur uniquement. Nous allons maintenant exploiter la connaissance du canal de transmission au niveau de l’émetteur : le récepteur est en mesure d’estimer le canal à partir d’une séquence d’apprentissage émise par l’émetteur. Si le rapport de mesure est transmis à l’émetteur, ce dernier peut alors combiner différemment les symboles à émettre sur les antennes afin de répartir la puissance selon une stratégie bien précise. Cette combinaison est réalisée par un précodeur linéaire à l’émission.

2.1.3.1 Multiplexage spatial avec connaissance du canal de propagation

On parle dans ce cas de multiplexage spatial en boucle fermée (closed loop spatial multiplexing), pour laquelle l’UE calcule par la méthode de décomposition singulière la matrice de précodage V et la matrice de post-traitement U. La matrice de précodage doit être transmise à l’émetteur (retour d’information). Le récepteur couple le traitement par une méthode d’égalisation ZF ou MMSE.

Ainsi, soit x le signal à émettre, le signal précodé est Vx. Le signal reçu est H.(Vx) soit par décomposition on obtient :

Après traitement au niveau du récepteur, le signal est \Sigma.x


Figure 2.6. Principe multiplexage MIMO

Le nombre de réel positif  non nul \lambda_k correspond au rang de la matrice H.H* appelé RI : Rank Indicator. Ce nombre permet à l’émetteur de connaître le nombre de couche spatiale indépendant pouvant être utilisé pour cet UE.

Afin d’optimiser le débit, la méthode de WaterFilling permet de répartir la puissance totale  vers les différentes antennes en émission. Cela consiste à transmettre plus de puissance aux canaux les plus dégradés afin d’obtenir un rapport signal sur bruit équivalent au niveau du récepteur en résolvant l’équation suivante :

La puissance est répartie sur chaque antenne selon la formule suivante :

avec la contrainte  telle que :

2.1.3.2 Diversité Spatiale avec connaissance du canal de propagation : Réduire les interférences (Beamforming)

La technique de beamforming SDMA (Space Division Multiple Access) correspond à un filtre spatial directif pour favoriser le gain dans une direction souhaitée et atténuer la puissance de l’onde dans les directions non souhaitées. Pour le contrôle et la formation des diagrammes de rayonnement, on applique à chaque antenne une pondération correspondant aux critères fixés comme la maximisation du gain dans une direction donnée, ou la maîtrise du niveau des lobes secondaires.

La pondération consiste à réaliser une multiplication par des coefficients complexes, des signaux à émettre sur chaque élément du réseau d’antennes. Ce calcul est similaire au précodage effectué pour le multiplexage spatial, en remplaçant la matrice de précodage par une matrice de Beamforming nommée B et s’appuie également sur la décomposition en valeur singulière de la matrice , et de la méthode d’égalisation ZF ou SMMSE (Successive Minimum Mean Square Error)

Pour calculer la matrice de pré-codage, le réseau d’antennes en réception va chercher à localiser l’émetteur, selon la technique DoA – Direction of arrivals. Au lieu d’estimer la matrice H de manière fréquentiel, le récepteur est un spectre dont les pics identifient les angles d’arrivés (on mesure la puissance du signal en modifiant l’angle d’orientation, le spectre est donc une fonction de l’angle).

L’algorithme du maximum de vraisemblance peut être utilisé pour améliorer la résolution des angles d’arrivés. Parmi les pré-codeurs, il existe un pré-codeur max SNR aussi appelé précodeur Beamforming dont l’objectif est d’orienter le signal dans une direction donnée (réduire le TEB et les interférences).

2.1.4 Conclusion

Le traitement des données s’alourdit en émission et en réception à cause de  l’augmentation des dimensions mais grâce à l’augmentation de la puissance de calcul embarquée, la miniaturisation des composants, la technologie des antennes …, il est désormais possible de commercialiser des systèmes MIMO 8×8.

Le MIMO pour un utilisateur permet d’augmenter la capacité de transmission mais cette capacité est malgré tout limitée par le nombre d’antenne de l’UE (en général, l’UE à moins d’antenne que l’eNb). Une autre évolution très importante est le MU-MIMO ou l’eNb génère plusieurs flux simultanément à partir de plusieurs d’antennes d’émission vers plusieurs UE. On parle de MU-MIMO

 

 

 

Massive MIMO : Description de l’antenne (Deuxième partie)

Suite de l’article : Massive MIMO : Définition (Première Partie)

I-4) La structure d’une antenne

Sur l’exemple ci-dessous extrait du site 5GAmericas (Reference 1), l’antenne est simplement constituée d’une colonne d’éléments rayonnants. L’antenne est équipée de 4 connecteurs coaxiaux, chaque connecteur est relié à une chaîne radio RF. Parmi ces 4 connecteurs, deux connecteurs permettent de fonctionner sur deux bandes différentes, et deux connecteurs sont utilisés pour l’exploitation de la polarisation cross-polaire (+/- 45°).

Figure 8 : Antenne 4G

Sur le schéma on observe 18 éléments rayonnants (Antenna Element), 10 éléments rayonnant sont conçus pour fonctionner dans une bande de fréquence avec une polarisation +/-45°, les 8 autres pour une autre bande de fréquence avec une polarisation de +/- 45°.

Il s’agit néanmoins que d’une seule antenne composée d’une colonne d’éléments rayonnants cross-polaire (single cross polarized column). Un panneau d’antennes (pannel antenna) représente un ensemble d’éléments rayonnants (AE) régulièrement espacés (Linear arrays).

Un circuit de connexion (feed network) réparti les signaux des connecteurs de la chaîne RF vers les éléments rayonnants correspondants (figure 8).

Figure 9 : Le circuit de connexion de l’antenne (feed circuit)

Pour reprendre les définitions précédentes : L’antenne dispose de 4 connecteurs TRX, deux connecteurs TRX fonctionnant sur une bande de fréquence, deux autres sur une autre bande.

Chaque antenne individuelle TRX se compose de 4 ou 5 éléments rayonnants. Chaque élément rayonnant fonctionnant sur une bande de fréquence et de même polarisation transmet donc le même signal RF. Si le déphasage apporté par le circuit de connexion est figé (feed circuit), on apporte un gain RF non contrôlé en temps réel (pas de possibilité d’orienter le faisceau RF de manière analogique, on peut toujours réaliser du beamforming numérique dans une bande donnée à partir des 2 antennes individuelles cross-polaires). Il s’agit d’antenne passive.

Le tiltage électronique peut être réalisé de manière mécanique soit par le contrôle d’un moteur DC soit par le déphasage apporté au niveau du circuit de connexion (signal RET e-tilt sur la figure 8).

Le faisceau commuté (switch beam) est une avancée vers l’antenne intelligente. L’objectif est de sélectionner le meilleur faisceau en fonction des conditions radios. Dans le cas de la matrice de Butler 4T4R, les 4 antennes individuelles sont toutes connectées à 4 éléments rayonnants avec une combinaison sur le déphasage de manière à transmettre 4 faisceaux différents.

Figure 10 : La commutation de faisceau

Chaque signal en entrée (4 signaux RF) peut donc être transmis dans une direction donnée.

Couplage du MIMO et du BeamForming : Pour transmettre le signal radio dans une direction donnée (Beamforming), il faut transmettre le même flux sur plusieurs antennes individuelles. Dans le cas suivant, l’antenne MIMO est une antenne 8T8R car elle est connectée à 8 chaînes radio RF. Chaque antenne individuelle est connectée à une colonne d’éléments rayonnant dans une polarisation donnée. La figure 11 montre 4 colonnes cross-polaires.

La directivité de l’onde nécessitant l’utilisation de plusieurs antennes individuelles de même polarisation, il est donc possible de générer deux ondes directives (nommés BeamForming BF1, BF2) à partir d’un poids de pondération à appliquer sur chaque antenne individuelle.

Il est donc possible :

  • de transmettre 8 flux identiques pour un seul utilisateur en exploitant les 8 antennes individuelles, dans ce cas on a un faisceau étroit et directif ;
  • ou de réaliser 4 flux MIMO pour augmenter la capacité et le ressenti utilisateur.

Figure 11 : L’antenne MIMO 8T8R

I-4) L’évolution vers le FD-MIMO.

Jusqu’à présent, la directivité de l’onde en élévation (vertical) était réalisée par un tiltage électronique (RET) lors du placement de l’antenne et cette configuration figeait la directivité dans la cellule.

Avec la technique FD-MIMO, il est possible de diriger le faisceau en élévation et en azimuth par l’exploitation d’un réseau d’antennes rectangulaires (ULA 2D) en temps réel.

Figure 12 : L’antenne ULA 2D

A partir de l’angle des signaux d’arrivé et d’un DSP intégré, l’antenne devient intelligente et peut contrôler la phase pour orienter le faisceau RF, on parle d’antenne active :

Figure 13 : Contrôle de la phase appliquée sur chaque AE de l’antenne individuelle

Les antennes Massive MIMO sont des antennes actives. La puissance de transmission  de l’antenne peut monter jusqu’à 120 W pour 128 AE et 180 W pour 192 AE lorsque tous les éléments rayonnants émettent à puissance maximales. La consommation électrique est bien supérieure, je n’ai pas les chiffres à ce jour.

 

Massive MIMO : Définition (Première Partie)

Je vous propose une série de 3 articles pour comprendre le massive MIMO. Je me suis appuyé sur les documents :

  • 3GPP;
  • 5G América;
  • et les informations des équipementiers comme Nokia, Ericsson et Huawei.

Cependant,malgré quelques réponses de Emil Björson (https://ma-mimo.ellintech.se/author/eb/) , et de Jakob Hoydis (Nokia), il y a une grande part d’interprétation. Je les remercie d’avoir pris le temps de me répondre.

N’hésitez donc pas à commenter ces articles pour améliorer le contenu, merci.

  1. Description générale du MIMO au Massive MIMO

I-1) Définition

La technologie MIMO (Multiple Input Multiple Output) consiste à transmettre simultanément N flux d’informations sur N antennes d’émission (un flux d’information par antenne d’émission) et chaque flux est reçu par M antennes en réception.

Le flux transmis par antenne peut être :

  • un même flux avec un précodage pour :
    • améliorer la diversité en émission (se référer aux codes Alamouti SBFC) ;
    • diriger le flux dans une direction donnée (avec un précodage pour orienter le flux – beam RF) ;
  • des flux différents (K flux, K est inférieur ou égal à N) pour augmenter la capacité de la station de base et améliorer le ressenti utilisateur.

Figure 1 : Le principe du MIMO

La notion de faisceau porte à confusion. On fera donc la différence entre :

  • un faisceau RF (beam RF) transmis dans une direction donnée en utilisant plusieurs antennes qui transmettent toutes le même flux;
  • un faisceau MIMO (beam) qui utilise plusieurs antennes pour transmettre différents flux ;
  • un faisceau MIMO dans une direction donnée (un faisceau RF) : le faisceau MIMO est constitué de plusieurs faisceaux RF (plusieurs beam RF) pour transmettre les flux différents dans une direction donnée. A titre d’exemple, on peut utiliser 16 antennes pour faire du 4×4 MIMO dans une direction donnée.

La notion d’antenne porte aussi à confusion, on parle en effet d’une antenne MIMO pour évoquer en réalité un réseau d’antennes (antenna array) ou un système multi-antennes. Pour clarifier les éléments, dans cet article, on nomme antenne MIMO, un réseau d’antennes constitué de plusieurs antennes individuelles et chaque antenne individuelle peut être constituée d’un réseau d’éléments rayonnants.

On va donc poser les définitions suivantes :

  • un réseau d’antennes est un ensemble de plusieurs antennes individuelles pouvant fonctionner ensemble comme une seule antenne nommée antenne MIMO;
  • les antennes individuelles sont connectées à un seul récepteur ou émetteur nommé TRX ;
  • l’évolution des techniques d’intégration permettent d’intégrer plusieurs éléments d’antennes (nommé Antenna Element) par antenne individuelle.

Une antenne du radio cellulaire (2G/3G/4G) est composée d’un ensemble d’éléments rayonnants protégé par un radôme :

Figure 2 : Le Radôme

Un élément rayonnant est appelé élément d’antenne (AE : Antenna Element). L’élément rayonnant présente un diagramme de rayonnement de 180° :

Figure 3 : Le Diagramme de rayonnement d’un élément d’antenne

Le module TRX est le module permettant de passer du signal en bande de base vers le signal RF. Il est composé d’un émetteur et d’un récepteur. En émission, le signal RF est transmis du module TRX à l’antenne individuelle, en réception l’antenne individuelle transmet le signal au module TRX.

L’antenne individuelle est constituée d’un réseau d’éléments rayonnants AE.

L’antenne MIMO est composée d’un ou de plusieurs panneaux d’antennes individuelles.

Les éléments rayonnant peuvent être co-localisés ou distribués.

Il existe deux modèle de connexion :

  • une antenne individuelle est connectée à un seul TRX, on parle de modèle de partitionnement ;
  • une antenne individuelle est connectée à plusieurs TRX, on parle de modèle complet.

En général, les antennes individuelles sont connectées à un ensemble d’éléments d’antennes colocalisées ou distribuées (sous-panneau – subarray), on est donc sur un modèle de partitionnement.

Figure 4 : Le modèle de connexion des TRX aux éléments d’antennes

I-2) La formation du faisceau RF

Un émetteur MIMO est composé de plusieurs modules d’émissions (N TX) chaque chaîne de transmission radio TX est connectée à une antenne individuelle.

Un récepteur MIMO est composé de plusieurs modules de réception (M RX) chaque chaîne de réception radio RX est connectée à une antenne individuelle.

Dans le cas de l’antenne MIMO, la formation d’un faisceau RF (beam RF) est un ensemble de gain et de déphasage appliqué sur les TRX de l’antenne par un précodage numérique.  La formation du faisceau est donc réalisée à partir d’un sous-réseau d’antennes individuelles passives.

Dans le cas de l’antenne Massive MIMO, chaque TRX est constitué d’un ou plusieurs éléments rayonnants (AE). Le contrôle des éléments rayonnant apporte un gain supplémentaire dans une direction donnée grâce à un contrôle en amplitude et en phase du signal issu du TRX (beam analog steering). Il s’agit donc d’un sous-réseau actif d’antennes et on parle de système d’antennes actives (AAS : Active Antenna System).

Figure 5 : Le contrôle de la direction du faisceau dans le domaine analogique

Si les éléments d’antennes sont régulièrement espacés (ULA : Uniform linear Array), la direction d’arrivée de l’onde est estimée à partir de la différence de marche :

Figure 6 : Calcul de la différence de marche

Pour un signal de bande étroite, en appliquant le retard (la différence de marche) sur chaque élément d’antenne, le signal reçu est le suivant :

(Equation 1)

 

On peut également écrire sous forme vectorielle :


(Equation 2)

 

 

 

Avec a la direction du faisceau.

A l’inverse, en appliquant un déphasage sur chaque élément d’antenne rayonnant, il est possible d’orienter le faisceau (faible bande car la formule dépend de la longueur d’onde) dans une direction donnée (AoD : Angle of Departure).

La simulation sous Matlab se programme ainsi :

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SIMPLE UNIFORM LINEAR ARRRAY
% WITH VARIABLE NUMBER OF ELEMENTS
% MATRIX IMPLEMENTATION
% COPYRIGHT RAYMAPS (C) 2018

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all
close all

f=1e9;
c=3e8;
l=c/f;
d=l/2;

no_elements=4;
theta=0:pi/180:2*pi;

n=1:no_elements;
n=transpose(n);

A=(n-1)*(i*2*pi*d*cos(theta)/l);
X=exp(-A);
w=ones(1,no_elements);
r=w*X;

polar(theta,abs(r),'r')
title ('Gain of a Uniform Linear Array')


(source : http://www.raymaps.com/index.php/fundamentals-of-a-uniform-linear-array-ula/)

Figure 7 : Diagramme de rayonnement (angle et gain) en fonction du nombre d’éléments d’antenne

Le gain apporté par l’antenne individuelle (sur laquelle est connectée le TRX) est égal au nombre d’élément rayonnants, cela revient à concentrer la puissance du signal dans un faisceau étroit. Quel que soit le diagramme de rayonnement, la puissance transmise dans le faisceau est identique, par contre plus le faisceau est fin plus la couverture est importante. Si N est le nombre d’éléments rayonnants, le gain en dB s’exprime par 10*log10(N).

En réception, la station de base est en mesure de déterminer la position du mobile selon une des deux méthodes :

  • en analysant le signal de réception sur les différentes antennes (cf. equation 2). Le calcul de l’angle d’arrivée (AoA : Angle of Arrival ou DoA : Direction of Arrival) utilise un algorithme de traitement du signal comme MUSIC ou ESPRIT ;
  • à partir du rapport de mesure transmis par le terminal mobile (CSI : Channel State Information).

En émission, la station de base peut diriger le faisceau dans une direction donnée en appliquant un déphasage et un gain sur chacun des éléments rayonnants : pour diriger un faisceau (beam) dans une direction donnée, il est nécessaire d’apporter un poids sur chaque élément rayonnant :

La valeur du vecteur de poids w est estimée à partir d’une des deux méthodes décrites ci-dessus (estimation AoA ou CSI).

I-3) La formation du faisceau

L’une des complexités du Massive MIMO réside dans le contrôle du gain et de la phase de chaque élément d’antenne. Pour réduire cette complexité, la formation du faisceau est réalisée par un précodage numérique (digital beamforming) à partir d’un sous-résau d’antennes passif suivi d’un gain apporté par le tableau d’élément rayonnant (plusieurs AE) par un sous-réseau d’antennes actives. On parle alors de technique hybride (hybrid : digital and analog) formant un système d’antennes actives.

Nous avons vu précédemment qu’une antenne individuelle était connectée à une ou plusieurs chaîne radio TRX. Donc, une chaine radio (TRX) est connectée à une antenne individuelle, laquelle pour rappel est composée d’un ensemble d’éléments rayonnants.

Le précodage en bande de base consiste à contrôler les flux au niveau de chaque chaîne radio TRX. Ainsi dans le cas d’une antenne 64T64R, le précodage numérique contrôle 64 flux.

Le précodage analogique permet d’apporter un gain RF supplémentaire.

Pour résumer :

  • le précodage numérique (en bande de base) permet de contrôler un ensemble d’antenne individuelle par TRX. Le précodage s’appuie sur les retours CSI ;
    • du MIMO en transmettant des flux différents sur différentes antennes individuelles ;
    • de la formation d’un faisceau en transmettant le même flux vers différentes antennes individuelles (plusieurs TRX transmettent le même flux).
  • le précodage analogique (sur le signal RF) permet de contrôler les éléments d’antennes constituant un TRX. Le précodage s’appuie sur l’estimation de l’angle à l’arrivée.
    • Le précodage analogique en RF permet d’orienter le faisceau dans une direction donnée.

Il est ainsi possible

  • d’affiner le faisceau (beam) dans une direction donnée en couplant le précodage numérique et analogique ;
  • ou de faire du MIMO directif en couplant le MIMO du précodage numérique en dirigeant les faisceaux (le faisceau MIMO est formé à partir de plusieurs faisceaux RF).

Il existe deux types de connexion entre l’antenne individuelle de la chaîne radio TRX et les éléments d’antennes :

  • une connexion par partitionnement : une antenne individuelle est connectée à un ensemble d’éléments d’antennes disjoints (se référer à la figure 4) ;
  • une connexion complète : les antennes individuelles sont toutes connectées aux mêmes éléments d’antennes.

A titre d’exemple, pour une station de base 64T64R, si chaque antenne individuelle de la chaîne radio TRX est connectée à 4 AE, alors l’antenne massive MIMO est composée de 64*4 = 256 AE.