Gestion de l’itinérance (Part 3) : IP eXchange – IPX

IPX : IP eXchange

Le roaming de Data (et de la VoIP) n’est pas qu’un simple échange de flux entre les différents opérateurs car les opérateurs (V-PLMN et H-PLMN) doivent aussi assurer sur le réseau visité la même qualité  pour les services souscrits par l’abonné par rapport à l’accès aux services sur le réseau nominal (HPLMN), tout en assurant l’intégrité des données et la sécurisation du flux. C’est à ce prix-là que les opérateurs pourront se différencier des OTTs et vendre la plus-value des services proposés (RCS, VOLTE, …)

Le réseau IPX est un réseau IP autorisant une interconnexion entre plusieurs opérateurs mobiles et opérateurs fixes, dont les conditions de raccordements (interconnexion) et surtout de services sont stipulés par des accords entre les opérateurs et les fournisseurs de services. L’objectif est d’assurer la qualité d’expérience du client (QoE) en spécifiant contractuellement les accords entre les différents acteurs et monnayer la plus-value apportée par chaque maillon de la chaine de transport (SLA : Service Level Agreement).

IPX est donc un réseau IP d’interconnexion proposé par les opérateurs afin de garantir une qualité d’échange de données via des accords commerciaux sur des spécifications techniques. Chaque service doit être transmis sur le réseau d’un opérateur selon la spécification de QoS correspondant au service en question : La voix et la Vidéo supposant une demande de QoS élevée doit être transmises  sur des bearers (Canaux de Données) prioritaires alors que les MMS seront transportés sur des bearers de priorités basses. Cela nécessite donc que la facturation pour chaque flux soit contractualisée entre les différents opérateurs pour que la rémunération soit couplée au type de réservation de liens mis en place par les opérateurs.

IPX

L’IPX permet aux opérateurs de définir plusieurs accords afin de garantir les services proposés à ses abonnés ou qu’il soit dans le monde  comme par exemple les services suivants : Rich Communication Suite-enhanced (RCS-e), Near Field Communication (NFC),  Voice over LTE (VoLTE), Mobile Money (paiement par mobile).

L’IPBX doit donc répondre aux points suivants :

  • Un Environnement sécurisé : Le réseau IPX est un réseau IP transparent non accessible depuis Internet.
  • Des services d’interconnexions IP flexibles et ouvert à tout opérateur fixe ou mobile et fournisseur de service (ISP): Un seul contrat pour des accès plus facile et plus rapide aux services « à la carte »
    • Contrat Bilatéral : Le fournisseur de service paye un lien assurant la QoS de bout en bout (comme une demande de lien privé sur différents opérateurs)
    • Contrat Multilatéral : Un seule contrat mais de multiples connexions. Un fournisseur de service peut joindre plusieurs pays.
    • Suivi de la Facturation (Cascading Payments) : Gestion des flux d’informations nécessaire à la mise en place des connexions entre les opérateurs et les fournisseurs de services. Chaque opérateur est responsable des performances des flux sur la partie du réseau qu’il exploite.
    • Qualité d’interconnexion : Le trafic doit être géré en respectant la QoS et les niveaux de services doivent être spécifiés par contrat entre opérateurs (SLA)

SLA

 

Sur ce lien, vous trouverez le communiqué de Presse d’Orange du 2 mai 2012 : « Orange lance son offre Multiservice IP eXchange et propose des services de convergence IP de haute qualité »

Gestion de l’itinérance (Part 2) : la mobilité des UE

Part 2 : Gestion de la mobilité

II-1) – La signalisation


Le réseau GSM et 3G s’appuie sur l’architecture traditionnelle de la téléphonie commuté et exploite le protocole de signalisation SS7 (cf. http://mooc-ipad-formation.eu).
Ainsi, la gestion de la mobilité, la gestion de la localisation et de l’authentification étaient pris en charge par le protocole MAP (Mobile Application Part).

Ce protocole décrit les messages transmis entre les différents équipements du réseau de l’opérateur Home (HPLMN) et l’opérateur visité (VPLMN). Lors d’une première phase de migration vers l’IP, la signalisation SS7 initialement transportée sur des liens traditionnels TDM comme le E1/T1 est dorénavant encapsulée sur l’IP via le protocole SIGTRAN.

Mais, le réseau LTE n’utilise pas le protocole de signalisation SS7 : Diameter a été préféré et remplace le protocole MAP en supportant toutes ses fonctionnalités.

Le protocole DIAMETER a été adapté pour le LTE afin de gérer la gestion de mobilité des UE au sein du LTE mais le protocole doit également assurer l’interconnexion entre le LTE et les réseaux 2G/3G (DIAMETER to MAP). Pour échanger des données de signalisation, DIAMETER utilise des AVPs (Attribute Variable Pair) afin d’encapsuler les données en provenance d’applications reconnues.

Sur le tableau suivant, en guise d’exemple, nous donnons la traduction des messages MAP/DIAMETER.

diameter_map

II-2) L’architecture du réseau LTE

Pour comprendre la gestion de la mobilité sur le réseau LTE, il est nécessaire de revenir sur l’architecture du réseau en insistant (en rouge) sur la partie roaming (cf. article précédent).

LTE_roamingLes interfaces en rouges sont exploitées lors du roaming, nous allons les détailler pour plus de clarté :

  • Gestion de la mobilité :

L’interface S6a permet de transférer des données d’authentification et de localisation entre le MME et le HSS via Diameter afin d’autoriser ou non l’accès d’un utilisateur au réseau LTE.
En général, l’authentification est réalisée en respectant le protocole AAA lequel réalise trois fonctions : l’authentification, l’autorisation, et la traçabilité (en anglais : Authentication, Authorization, Accounting/Auditing)
L’interface S6d autorise les échanges d’informations relatives au protocole AAA entre le SGSN et HSS sur (over) DIAMETER.

  • Policy Control and Charging

L’interface S9 transfère la politique de contrôle de la QoS et les informations de taxation entre le HPCRF (Home Policy and Charging Rules Functionality) et le PCRF (Policy and Charging Rules Function) du V-PLMN toujours sur Diameter (cf. architecture SAE/LTE)
Le PCRF supervise les flux sur le réseau LTE : Il peut détecter les types de flux et de services (DPI : Deep packet Inspector) et met en relation la taxation adaptée (abonnement, calendrier) sur ce type de flux.

  • GTP Traffic

Le flux de données est transporté via un tunnel entre le SGW et le PGW sur l’interface S8. On retrouve le même fonctionnement en 2G et 3G, entre le SGSN et le GGSN.

II-3) Mise à jour de la localisation

Lorsqu’un utilisateur authentifié est en déplacement, le premier message reçu par le cœur de réseau est un message de Mise à Jour de la localisation (Location Update), quel que soit le protocole MAP ou DIAMETER utilisé.

Cependant, dans le cas

  • GSM MAP; le message ISD (Insert Subscriber Data) transporte le profil complet de l’abonné et si l’information complète ne peut être transmise dans un seul message ISD, le V_PLMN demande la transmission des informations complémentaires via d’autres messages ISD.

En 2G/3G, le protocole INAP/CAMEL est utilisé chaque fois qu’un utilisateur est en itinérance sur un autre réseau. LTE ne supporte pas le protocole CAMEL, il n’existe pas de traduction de message INAP vers le protocole DIAMETER

  • Pour DIAMETER, le LUA (Location Update Answer) transporte le profil de l’abonné. Ainsi, le DIAMETER ISD n’est utilisé que lorsque le H-PLMN demande un changement dans le profil de l’abonné.

Sur les figures ci-dessous, nous illustrons la partie Location Update via le protocole MAP (figure de gauche) et via le protocole Diameter (figure de droite)

Loc_Update_MAP_Diameter

II-4) Contrôle de la politique de QoS et facturation en temps réel

Dans le précédent article, nous avions vu deux techniques de routage de trafic, soit via le P-GW du réseau visité (Local Breakout) soit via le P-GW du réseau home (Home Routing).

Dans le premier cas, il est nécessaire de définir un accord pour échanger les informations de contrôle d’appel via l’interface Gy entre les deux PLMN. Ainsi, le PDN du V-PLMN peut interagir directement avec le système de tarification (charging system) du H-PLMN.

II-4.1) Home Routing

Basons-nous sur l’architecture du LTE, en focalisant notre attention sur les équipements impliqués lors du roaming. Sur la figure suivante, le V-PCRF communique avec le H-PCRF via l’interface S9 mais la facturation en temps réel (Real Time Charging) n’est pas transmise sur l’interface S9, mais via l’interface Gy selon le protocole DIAMETER RFC 3588.

Chaging_system_HPLMN

Concernant le roaming 2G/3G vers la 4G (on parle de roaming INTER-RAT), il faut savoir que le PCEF n’est pas pris en charge sur le réseau 2G/3G, ce qui pose un souci de QoS lors d’un roaming inter-RAT. En effet, dans le cas du réseau 2G ou 3G, le GGSN était dédié aux données et la QoS était spécifiée par la création d’un PDP context, la téléphonie était géré par le MSC, les SMS par le SMSC, et les services avancés par CAMEL.

II-4.2) Local Breakout

La procédure est légèrement différente, puisque c’est le PCEF du réseau visité qui transmet les informations de facturation en temps réel au H-PLMN. Les mêmes interfaces que précédemment sont utilisées.

Chaging_system_PLMNs

Gratuité de l’itinérance (Part 1): Bouygues dégaine en premier

Architecture du Roaming LTE

En début d’année, les opérateurs (Free, suivi de Bouygues puis Orange) avaient annoncé la gratuité du Roaming (itinérance) sur l’ensemble de l’Europe ou dans certains pays (Italie, Portugal pour Free), et/ou réservé à quelques abonnements. Ainsi, par exemple Bouygues avait annoncé le 22 janvier l’itinérance gratuite en Europe sur ses forfaits Sensation à partir du 24 février.

Nous allons montrer dans cet article comment la gratuité peut être effective sur le réseau 4G. Mais, comme l’objectif de toute entreprise, c’est de gagner de l’argent, nous aborderons donc dans cet article la partie facturation (billing) et le chargement d’information de tarification sur le type de service (charging).

Dans un premier temps, il faut revenir sur le concept de routage pour la LTE, le fonctionnement du LTE se diffère à ce niveau par rapport à la téléphonie 2G/3G. En effet, il existe deux méthodes de routage, le Home Routing et le Local breakout. A chaque méthode est associée des processus de tarification qui différent par conséquent par rapport à la 2G et 3G).

Nous allons donc naturellement commencer cet article par l’architecture de Roaming du LTE

I-1) Roaming LTE

Un réseau mobile déployé par un opérateur dans un pays se nomme PLMN (Public Land Mobile Network). Chaque utilisateur ayant souscrit à un opérateur utilise de préférence le réseau de cet opérateur, on parle de H-PLMN (Home PLMN). L’itinérance (roaming) permet à cet utilisateur de se déplacer en dehors du réseau de son opérateur et d’utiliser les ressources d’un autre opérateur (concurrent ou complémentaire). Cet opérateur est appelé V-PLMN (Visited PLMN).

Un utilisateur en itinérance est connecté à l’interface E-UTRAN, au MME et au S-GW du réseau LTE visité. Cependant le LTE/SAE permet de router les paquets vers un P-GW lequel appartient soit au réseau de l’opérateur visité (V-PLMN) soit à celui de son propre opérateur (H-PLMN), comme le montre la figure ci-dessous.

roaming

L’avantage du Home Routing est la capacité d’accéder aux services souscrits chez son opérateur (H-PLMN) même si le client (abonné) est sur un réseau visité. Le P-GW dans le réseau visité permet à l’abonné un accès local (Local Breakout) au réseau Internet via le réseau de l’opérateur visité.

L’interface entre le S-GW (Serving Gateway) et la passerelle P-GW permettant d’accéder au réseau de données (PDN : Packet Data Networks) est nommée S5 dans le cas du Local Breakout ou S8 pour le Home Routing.

I-2) LTE roaming Charging

La complexité des nouveaux modèles de taxations pour supporter l’itinérance en 4G sont plus nombreux que pour la 3G

  • Les cartes Pré-payées. Le standard CAMEL, qui permet l’accès par pré-payement aux services 3G n’est pas compatible avec la 4G. Ains, les accès au réseau PDN par des utilsateurs de cartes pré-payées doivent être obligatoirement routées vers le H-PLMN et ne peuvent donc pas être routés via le V-PLMN. Les opérateurs doivent donc mettre en place un flux de taxation spécialement dédié au clients de carte prépayé afin que ces derniers puissent accéder au PDN via leur P-GW
  • Les forfaits : La facturation s’appuie sur les mêmes tickets que le 3G.

Dans le cas de Local breakout, les opérateurs n’ont pas la même visibilité sur les activités des abonnés puisque la connexion de l’abonnée est gérée par le V-PLMN. Cependant, afin que l’opérateur Home puisse avoir des informations en temps réels (nécessaire entre autre pour les forfaits bloqués), il doit établir une interface DIAMETER entre son système de facturation et le P-GW du réseau visité.

Dans le cas d’un Local Breakout sur des services IMS, le réseau visité crée un CDR (Call Detail Records ) en provenance du S-GWS-Gateway(s). Cependant le CDR ne contient pas toutes les informations requises pour créer un TAP selon la version 3.12 pour le service utilisé (évènement ou session). En conséquence de quoi, les opérateurs doivent corréler les CDRs émis par leur proper réseau avec le CDR crée par l’IMS pour constituer un enregistrement TAP.

I-3) TAP 3.12

TAP : Transferred Account Procedure est le mécanisme permettant aux opérateurs d’échanger des informations de facturations des clients en roaming. TAP 3.12 correspond à la version 12 et la release 3, laquelle décrit la syntaxe des fichiers TAP transmis entre les opérateurs depuis le 1er mai 2013.

tap

Le TAP est transmis au HPLMN au plus tard 36 heures après la fin de la session.

Extrait du module de Formation LTE 4G – part 4

Voici le dernier article extrait du module de formation réalisé pour détailler la couche physique du LTE et principalement la formule de Shannon et le calcul de puissance.

Capacité : Formule de Shannon

Nous allons maintenant déduire de cette étude sur la couche physique, l’impact au niveau du calcul de Shannon appliqué au LTE.

C = FB log2(1 + SNR)

 C, la capacité est proportionnelle à la bande B, et dépend du rapport Signal à Bruit SNR de la communication. Le facteur F est un facteur de pondération qui prend en compte la durée du temps de garde mais aussi, du nombre de symboles de contrôle par RB.

Avec Nsc=12, le nombre de sous porteuses et Ns, le nombre de symboles OFDM par sous trame (une sous trame à une durée de 1ms). Or, nous savons qu’il y a 6 ou 7 symboles par slot, un slot étant une demi sous trame. Donc Ns=12 ou 14 (axe vertical).

Mais, dans un Ressource Block, il y a donc Nsc*Ns/2 symboles dont 4 symboles (RE) réservés au CRS  (Cell Reference Signal). Donc le nombre de symboles utiles pour la transmission sont proportionnelles à la formule de Shannon à un facteur (Nsc.Ns/2-4)/Nsc.Ns/2

Pour plus d’information, lisez l’article suivant

http://mirror.transact.net.au/pub/sourceforge/n/project/ns/ns3-lte/HARQ/Documents/State%20of%20the%20Art/Articles/phylayer_simu.pdf

Extrait du module de Formation LTE 4G – part 3

Couche Physique LTE

La couche physique du LTE-FDD s’appuie sur une trame de 10 ms, découpée en 10 sous trames, chaque sous trame est composée de 2 slots.

Les slots d’une durée de 0,5 ms sont composées de 6 ou 7 symboles d’informations (mode étendue ou normale), chaque symbole a une durée de 66,7 µs (principe d’OFDM cela correspondant à l’écart de porteuse de ∆F=15 kHz). Par conséquent la durée de transmission des 7 symboles (chaque symbole est défini par une durée de  66.7µs) est égale à 7*66.7µs soit 467µs et non en 500 µs (0.5ms). En fait, chaque symbole est complété du préfixe cyclique (CP) défini précédemment, dont les durées sont de 5.2µs pour le premier symbole et de 4,7µs pour les  6 autres symboles. La durée totale est donc de 5.2+6*4.7=33.4 µS

La durée du premier symbole avec le préfixe est donc de 66.7+5.2=71,9 µs. La fréquence d’échantillonnage est de 30720000 Hz, cela signifie que le signal est échantillonné toutes les 1/30720000 s.

Prenons l’exemple d’une règle de 30 cm, vous la graduez toutes les 1 cm. Supposons un signal TTL qui dure 30 seconde (TTL est un signal qui vaut 0 volt ou 5 volt), vous pouvez transmettre  un échantillon toutes les 30 secondes, donc soit un 0 soit un 1, ou vous pouvez transmettre 1 échantillon toute les secondes (dans ce cas, vous transmettrez 30 ‘0’ ou 30 ‘1’). Si maintenant le signal évolue lentement sur une durée de 30 secondes, vous pouvez transmettre 30 échantillons.  Voici un exemple sur un signal en temporel.

Dans le cas du LTE, la fréquence d’échantillonnage est de 30720000 = 2048 * 15 kHz = 8*3 400 000. Il est intéressant de constater que la fréquence d’échantillonnage est le multiple de l’écart en fréquence OFDM par le nombre maximum de porteuses (2048) mais est aussi un multiple de la séquence Chip émise en 3G (3,84 Mcps). Le récepteur pourra donc utiliser la même Horloge pour la réception en 3G et en 4G.

Reprenons nos explications, le premier symbole OFDM  à une durée de 71,9µs. Nous échantillons ce signal avec une fréquence d’échantillonnage de 30720000. Le nombre d’échantillons obtenus est donc : 71,9µs*30720000 = 2208 échantillons

En terme de calcul de puissance, on affecte la puissance du signal utile d’un facteur de perte égale à (T_frame-T_cp)/T_Frame, ce qui correspond au quotient de perte dû à l’insertion du CP.

Interprétons maintenant le tableau suivant

L’utilisation de la FFT permet de calculer plus rapidement la Transformée de Fourier d’un signal, par contre cela nécessite de travailler sur un nombre de porteuses multiples d’une puissance 2 soit une taille de FFT nommée N égale à 128, 256, 512, 1024, 1536 et 2048.

L’écart en fréquence est de 15 kHz. Si la FFT est sur N point, le signal avant conversion S/P est échantillonnée toutes les Ts=66,67µs/N. Il s’agit de la période d’échantillonnage. La fréquence d’échantillonnage Fs est donc 1/Ts=15000*N

Si N=128, Fs=1 ,92 MHz

Si N=256, Fs=3.84 MHz …

 

On transmet des Ressources Blocks, il s’agit de 12 porteuses, soit une bande de 180 kHz.

Si l’on transmet 6RB, la bande utilisée est de 6*180 = 1.080 MHz, cela revient à 6*12

 

 

 

 

 

Extrait du module de Formation LTE 4G

Bonjour

dans mes modules de formation 4G, je détaille la couche physique et je développe une formule permettant de calculer la capacité théorique du canal en appliquant la formule de Shannon, et appliqué à la 4G.

Je vous propose de vous livrer un chapitre de mon cours, à travers 3 articles pour aboutir à la formulation de la capacité du canal en 4G.

Cet article étant le premier, je vais revenir sur l’OFDM, principe déjà traité dans ce blog.

Principe de l’OFDM

Deux points critiques (parmi tant d’autres) pour les télécommunications sont la synchronisation et l’adaptation au canal de propagation. Dans le cadre d’une transmission mobile, le canal de propagation varie fortement (cf. canaux sélectifs en fréquence et en temps, article Pourquoi-la-4g-utilise-lofdma)

Lorsqu’un canal est sélectif en fréquence, l’atténuation varie d’une bande de fréquence à une autre. Imaginer un égaliseur audio (cf. audacity ou equalify) qui modifie les sons dans les aigus et les graves, il en est de même pour le signal reçu au niveau de l’équipement radio. Pour illustrer cela sur un extrait audio, je vous propose de modifier des séquences audios via Audacity.

Parmi les techniques de compensation (on parle plutôt d’égalisation), l’utilisation de modulations multi-porteuses sont plus simple à mettre en place car, comme dans le cas des égaliseurs audios, l’équipement ne modifie (amplifie) qu’une bande faible de signal. Le signal OFDM (imaginé en 1960) consiste à transmettre une information binaire (une suite de bits, c’est-à-dire des symboles) sur des porteuses différentes, autrement sur des fréquences différentes (la aussi, on peut imaginer le concept avec la radio FM, imaginez qu’une radio diffuse non plus sur une seule fréquence, mais sur plusieurs fréquences).

Le spectre ainsi obtenu est un ensemble de modulation sur des porteuses équi-réparties. Le spectre est représenté sur la figure ci-dessous.

C’est avec l’avènement et la maitrise des composants programmable que l’OFDM a connu un véritable essor. En effet, cette modulation est maitrisée et rapidement réalisée via un composant électronique dédié, nommé DSP. La technique utilisée est la fameuse transformée de Fourier. Nous représentons le synoptique de la chaîne OFDM et l’outil mathématique en jaune permettant de réaliser cette fonction OFDM.

Cette méthode (OFDM et réalisation pratique) est déjà utilisée dans différents standards sans fils (IEEE802.11a, WiMAX, LTE, DVB).

Comme on peut le constater sur les figures précédentes, le principe consiste à sérialiser les informations à transmettre sur N sous porteuses.

Imaginons devoir transmettre une information dont le débit est de 1024000 symboles par secondes. Le spectre du signal est donc étendu sur une bande de 2*1024000 Hz (sans filtrage).

Si l’on sérialise sur 1024 porteuses, nous allons transmettre 1000 symboles par seconde par porteuses, le spectre par porteuse est donc de 2*1000 Hz (sans filtrage). Il suffit donc de transmettre chacune des porteuses avec un écart de 1000 Hz pour avoir une transmission OFDM.

Nous traiterons dans le prochain article du préfixe cyclique.

RSRP et RSRQ

Cet article a été mis à jour le 11/11/2021

En allant sur les forum 4G, je m’aperçois que plusieurs topics traitent du problème suivant : Pourquoi le RSRQ=-3dB au maximum?

Hypothèse : Si l’on suppose que seul le signal de référence est transmis dans les ressources blocks, et que l’on ne prend pas en compte ni les données (que les RS), ni le bruit, ni les interférences alors dans ce cas RSRQ=-3dB.

Les raisons évoquées dans les forums me paraissaient flous, comme par exemple les liens suivants

Je vous propose donc dans cet article de revenir sur ces notions RSRP, RSRQ et RSSI pour expliquer :

Pourquoi RSRQ=-3dB si l’on suppose que seul le signal de référence est transmis.

(Ce cours est un extrait des formations proposées sur la 4G, cf http://www.mooc-ipad-formation.eu/ ou http://blogs.univ-poitiers.fr/f-launay/modules-de-formation/ ou contactez moi)

Mais avant cela, revenons sur les définitions et les fonctions du RSRP, RSRQ et RSSI. Nous en profiterons aussi pour revenir sur des notions similaires en 3G en lisant les articles suivants :

Avant d’aborder le problème, revenons une fois de plus sur les définitions :

3GPP TS 36.214  V9.2.0

Reference signal received power (RSRP), is defined as the linear average over the power contributions (in [W]) of the resource elements that carry cell-specific reference signals within the considered measurement frequency bandwidth.

Le RSRP correspond à la puissance moyenne d’un RE dans lequel le signal de référence CRS est transmis et sur l’antenne 0 et éventuellement l’antenne R1.

Pour comprendre la mesure, il est donc nécessaire de revenir sur le mapping physique d’une trame LTE (sur une sous-trame soit 2 RB consécutifs) :

FFigure 1 : Un exemple de répartiton des signaux de références RS

Un RB est composé de 84 RE (7 symboles, 12 sous-porteuses), il y a 4 RS et dans l’exemple traité (pas de données), 80 RE qui ne transportent aucune information.

Mais, Le RSRP mesure la puissance transportée par le signal de référence dans un RE, le RSSI quant à lui mesure sur la bande totale, sur N RB.

D’après le mapping, seuls les symboles 0 et 4 de chaque slot transmettent des RS et sur chaque symbole, il y a 2 sous porteuses  sur 12 qui transportent le message de référence.

Sur le premier temps symbole, sur les 12 sous-porteuses, le terminal va mesurer la puissance contenue dans les éléments de ressource RE qui transportent le signal de référence RS. La puissance RSRP est la moyenne des puissances mesurées.

Ainsi, sur l’exemple de la figure 1, en se basant sur un seul RB, la valeur RSRP correspond à la 1/2 de la puissance totale mesurée sur le 1er symbole sur les sous-porteuses 6 et 12.

La sous-porteuse 6 et 12 ne transportent a priori que le signal de référence. Les autres sous-porteuses 1 à 5, 7 à 11 transportent le trafic utile.

La valeur du RSSI est mesurée sur toutes les sous-porteuses du premier temps symbole du RB. Sur un  seul RB , le RSSI par RB est donc égale à 12*N*RSRP, avec N le nombre de RB.

Supposons que la station de base ne transmette aucun trafic, alors les RE des sous-porteuses 1 à 5 et 7 à 11 ont une puissance nulle. Ainsi, sur N RB alors la valeur du  (sute au commentaire de François, correction au 31/12/2024)  RSSI=2*N*RSRP

Le RSRQ est égale à 10*log10(N*RSRP/RSSI) vaut donc ½ soit -3dB dans notre exemple.

Hypothèse 2 : Si maintenant on suppose que des Données sont transmises sur chaque sous porteuses à la même puissance que le signal de référence. Dans un RB il y a 2 RE ou le signal de référence RS est transmis, et il y a 10 RE pour les données. Chaque RE portant la même puissance (égale à RSRP par hypothèse), la puissance transportée par RB est donc égale à 12 RSRP.

Donc si l’on suppose que les données sont transmises avec la même puissance, le RSRQ vaut 1/12 soit RSRQ=-10,79 dB

Quelle est la plage de valeur du RSSI ?

Selon les sites, la plage de valeur de RSSI varie entre -53 dBm à -95 dbm, ou de -40 dBm à -130 dBm, mais en fait il n’y a pas de réponse absolue mais des mesures pratiques.

Le RSSI est une mesure sur la bande totale incluant le bruit, les interférences issues des stations de base voisine et le signal de la station de base serveuse.

Dans l’exemple 2, on supposait que les stations de bases voisines n’émettaient rien et on supposait que la puissance reçue sur chaque RE est égale à la puissance le signal de référence. Ainsi, sur 1 RB on mesure RSSI=12*RSRP

Sur la bande totale (N RB) alors le RSSI=12*N*RSRP, valeur que l’on retrouve parfois dans la littérature. Mais il faut prendre en compte l’hypothèse forte le signal reçu sur chaque RE est égale à la puissance reçue RSRP.

En dB, on a RSSI=RSRP+10*log10(N), avec N compris à 6 (pour 1.4 MHz de bande) à 100 (pour 20 MHz de bande). On trouve ainsi dans la littérature que RSSI est supérieure à RSRP d’une valeur de 20 dB (10*log10(12*6) = 18,57 dB) à 30 dB (10*log10(12*30)=30,8 dB), ce qui n’est pas exact puisqu’on suppose qu’il n’y a pas d’interférence (pas de station de base voisine ou pas de MIMO)

Le RSRP à une valeur comprise entre -44 dBm à -140 dBm (3GPP TS 36.133 V8) donc au mieux on peut considérer que le RSSI est compris entre -14 dBm (20 MHz de bande) à -120 dBm (1,4 MHz de bande) dans l’hypothèse précédente.

Dans la pratique, on peut considérer que :

  • Canal mauvais : RSSI < -80 dBm
  • Canal moyen : – 70 dBm < RSSI < – 80 dBm
  • Canal bon : – 60 dBm < RSSI < – 70 dBm
  • Canal excelle : – 50 dBm < RSSI < – 60 dBm

Exemple issu d’un forum (https://lafibre.info/bboost/rssi/) :

Et le SINR -Signal Interfence Noise Ratio?

La valeur du SINR n’est pas définie au niveau du standard 3GPP et pourtant cette valeur apparaît comme mesure de la qualité du signal.

Le SINR est le rapport de puissance entre le signal utile et le bruit auquel on rajoute les interférence SINR=P/(N+I). Cette valeur s’exprime en dB : 10.log10[P/(N+I)]

  • S est la puissance utile mesurée au niveau du signal de référence ou du canal PDSCH
  • I est la puissance des interférences créé par les cellules voisines
  • N est le bruit thermique

Le calcul est donc le suivant (cf. https://www.cablefree.net/wirelesstechnology/4glte/lte-rsrq-sinr/)

 

RSRP et RSRQ 2ème : Définition

Pour faire suite aux mesures présentés dans l’article précédent, nous allons maintenant détailler les notions.

J’invite le lecteur à revenir éventuellement sur un précédent article présentant une partie de la couche physique : http://blogs.univ-poitiers.fr/f-launay/2011/09/25/15mhz20mhzdebandes-quellessontlesconsequences/

I) Reference signal Receive Power (RSRP):

RSRP est la mesure la plus basique réalisée par la couche physique du l’UE, permettant d’obtenir une valeur moyenne de la puissance reçue du signal de référence (RS) émise par la station de base par RE (Resource Element). La mesure s’exprime en Watt ou en dBm. La valeur est comprise entre -140 dBm à -44 dBm par pas de 1dB.

Puisque le signal de référence RS n’est émis qu’à un instant donné sur une seule bande de fréquence, la mesure n’est réalisée que dans cette bande de fréquence (correspondant à un RE : Ressource Element). Sur la figure ci-dessous, on présente la position des signaux de référence dans un RB (transmis sur les symboles 1 et 5 sur cette figure ou sur les symboles 0 et 4 selon la numérotation du premier symbole)

De par la sélectivité en fréquence du canal de propagation, la valeur du RSRP n’est pas identique d’un RE à l’autre, cependant afin d’optimiser la bande de fréquence pour les communications, il n’est pas prévu de réaliser des mesures de RS sur toutes les ressources symboles mêmes si des mesures précises doivent être réalisées pour estimer au mieux la qualité du lien radio. On note ici la différence principale entre le RSRP et le RSSI (Reference Signal Strength Indicator) lequel est une mesure de puissance sur toute la bande de fréquence, et pas seulement sur un RE comme c’est le cas pour le RSRP.

A partir des mesures effectuées par l’UE, il est possible de récupérer le RSRP de la cellule principale et des cellules voisines, mesures effectuées sur la même fréquence ou deux fréquences différentes (même RE sur une ou plusieurs antennes dans la cadre du MIMO).

On distingue deux types d’exigences sur la précision de la mesure, la précision absolue du RSRP et la précision relative RSRP.

  • La précision absolue du RSRP consiste à comparer le RSRP mesurée dans une cellule par rapport au RSRP mesuré par la cellule principale (serving cell).
  • La précision relative du RSRP consiste à comparer le RSRP mesurée dans une cellule par rapport au RSRP mesuré dans une autre cellule autrement dit entre deux cellules qui ne sont pas définie comme la cellule de référence (serving cell). Il est ensuite possible de différencier la précision relative et absolue intra-fréquentielle et inter-fréquentielle. Intra-fréquentielle signifie que les mesures sont réalisées sur la même fréquence, et inter-fréquentielle pour traduire l’idée que la mesure entre les 2 RSRP est effectuée sur 2 bandes de fréquences différentes.

La connaissance du RSRP absolu permet à l’UE de connaitre la fiabilité de la cellule à partir de laquelle on estime l’atténuation apporté par le canal, ce qui conditionne la puissance optimale de fonctionnement du mobile pour interagir avec la station de base.

Le RSRP est utilisé à la fois en mode de veille qu’en cours de communication. Le RSRP relatif est utilisé comme un paramètre de choix dans le cas de scénarios multi-cellules.

Le RSRP est donc utilisé soit à des fins de Handover dans le cas d’une communication, soit à la définition de la cellule de référence. Cependant, dans le cas du Handover, il est préférable de s’appuyer sur le RSRQ qui est un indicateur de qualité de la communication.

Le RSRP est un indicateur de l’atténuation subit dans le canal, bien que différent de la puissance totale reçue (puissance du signal transmis et du bruit), cet indicateur peut être comparé à l’indicateur CPICH RSCP (Received Signal Code Power)  effectuée dans le cadre du WCDMA (3G) pour sélectionner le choix de transmission (3G ou 4G). Le RSCP est la mesure de puissance d’un canal pilote WCDMA (CPICH : Common Pilot Indicator Channel) sur une bande de 5 MHZ. Cela prend en compte le signal reçu dans sa globalité, c’est-à-dire avec le bruit et les interférences.  La comparaison entre le RSRP et le RSCP permet de choisir la techno en cas de changement de RAT ainsi que pour le Handover.

Différence entre le RSRP et le RSCP?

Afin de bien différencier les sigles, je vous propose de re-définir chacun d’entre eux :

RSCP : Received Signal Code Power (UMTS) représente le niveau de la puissance reçue de la fréquence pilote d’une station de base (Nœud B ou nB). Dans le cadre de la 3G, le multiplexage est réalisé par code, plusieurs nB peuvent transmettre sur la même fréquence, avec des codes spécifiques. Le RSCP permet de calculer le niveau de puissance d’une station de base, c’est-à-dire après démultiplexage du code.

RSRP : Reference Signal Receive Power (LTE) représente la puissance reçue sur un RB en provenance d’une cellule (les séquences de CRS sont différentes d’une cellule à l’autre grâce aux propriétés d’intercorrélation et d’autocorrélation des séquences de Zadoff-Chu),

Pour simplifier, le RSRP est la mesure équivalente au RSCP pour la 3G, c’est deux notions sont donc identiques dans la fonction, mais s’applique à deux technos différentes.

RSSI 3G : Pour la 3G, le RSSI (Received Signal Strength Indicator) s’appuie sur la puissance du signal sur la bande de 5 MHz, il s’agit donc de la puissance mesurée en provenance de toutes les stations de base.

RSSI 4G (E-UTRA RSSI) : Pour la 4G, le RSSI représente la puissance totale mesurée par le mobile, sur toute la bande (Wideband) ou sur une bande de 6 PRB (Narrowband). La durée est paramétrable (par la couche supérieure) sur une sous-trame ou plusieurs sous-trames.

La puissance moyenne est mesurée par défaut sur l’antenne 0.

Ainsi, le signal mesuré comprend :

  • les symboles CRS de la cellule serveuse;
  • les symboles de trafic et de contrôle (canal PDSCH/PDCCH) de la cellule serveuse
  • les symboles de trafic/contrôle et CRS des cellules voisines.

La mesure est donc une moyenne linéaire des symboles OFDM de référence de la cellule serveuse sur la puissance totale (comprenant la puissance des signaux de référence, l’interférence co-canal de la cellule serveuse et les interférences des cellules voisines ; définition 3GPP – Document TS.36.214).

Definition : E-UTRA Received Signal Strength Indicator (RSSI), comprises the linear average of the total received power (in [W]) observed only in the configured OFDM symbol and in the measurement bandwidth over N number of resource blocks, by the UE from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermal noise etc.

Avant la R.12, la mesure de puissance n’est réalisée que sur l’antenne 0. A partir de la R.12, le choix de la mesure au niveau des antennes est paramétrable (par la couche supérieure mais par défaut la mesure est faite sur l’antenne 0).

Concernant la durée :

  • de quelques symboles de la sous trames ou de plusieurs sous trames consécutives;
  • de tous les symboles de la sous-trame ou de plusieurs sous-trames consécutives;
  • de tous les symboles de différentes sous-trames non consécutives.

TS 36.214 (R.12 et supérieure) Unless indicated otherwise by higher layers, RSSI is measured only from OFDM symbols containing reference symbols for antenna port 0 of measurement subframes. If higher layers indicate all OFDM symbols for performing RSRQ measurements, then RSSI is measured from all OFDM symbols of the DL part of measurement subframes. If higher-layers indicate certain subframes for performing RSRQ measurements, then RSSI is measured from all OFDM symbols of the DL part of the indicated subframes.

Pour récupérer cette valeur sur un modem, la commande AT à utiliser est AT+CSQ qui retourne la valeur RSSI.

II) Reference Signal Receive Quality (RSRQ):

Bien que le RSRP soit une mesure importante, il ne donne aucune information sur la quatité de la transmission. Le LTE s’appuie alors sur l’indicateur RSRQ, défini comme le rapport entre le RSRP et le RSSI. Le RSSI représente la puissance totale du signal reçu, cela englobe le signal transmis, le bruit et les interférences.

RSRQ=10*log(N*RSRP/RSSI)

N étant le nombre de ressource block.

Mesurer le RSRQ est intéressant particulièrement aux limites des cellules, positions pour lequelles des décisions doivent être prises pour accomplir des Handovers et changer de cellule de références. Le RSRQ mesuré varie entre -19,5dB à -3dB par pas de 0.5dB.

Le RSRQ n’est utile uniquement lors des communications, c’est-à-dire lors de l’état connecté. La précision absolue (Intra- et inter-frequentiel) varie de ±2.5 à  ±4 dB.

Le RSRQ pour la 4G peut être comparé à l’indicateur CPICH Ec/No réalisé en 3G

EcNo (3G) : Ec est l’énergie reçue par chip (terme réservé à la 3G) du canal pilote divisé par le bruit total. Cela revient à estimer une image du rapport Signal Sur Bruit, lequel conditionne (Cf. Shannon) la capacité du canal, autrement dit le débit maximum de transmission sans erreur. EcNo est donc égal au RSCP (3G) divisé par le RSSI (bruit total). La meilleure valeur de EcNo correspond à la marge de puissance entre le signal reçue et le bruit sur le signal pilote (et uniquement sur le signal pilote). C’est pour cette raison que la valeur est indicative du rapport signal à bruit pour la transmission de données mais n’est pas la valeur du rapport Signal à Bruit (SNR) de la transmission des informations.

L’indicateur RSRQ fournit des informations supplémentaires quand le RSRP n’est pas suffisant pour faire le choix d’un handover ou d’une re-sélection de cellules.

Pour finir, un petit tableau récapitulatif

Avec des valeurs sur le RSSI (ASU – Active State Update est dérivé du RSSI) :

RSRP et RSRQ 1ère partie : Mesure de la qualité du signal radio et de la puissance reçue réalisée au niveau de la couche Physique.

Le mobile (User Equipment ou UE) et la station de base (eNB) effectuent périodiquement des mesures radios pour connaître la qualité du lien radio (canal de propagation).

Au niveau du mobile, la mesure du RSRP permet au mobile d’estimer la puissance qui est reçu au niveau d’une station de base. La comparaison du RSRP de différentes stations de base permet au mobile de resélectionner la station de base serveuse en fonction des critères de sélection transmises dans le message SIB.

La mesure RSRQ mesure la qualité du signal et est utilisée par la station de base lors d’un Handover.

Toutes les caractéristiques sont indiquées dans le document 3GPP TS 36.214, et nous tentons ici d’extraire des informations sur l’utilité des mesures et les conditions de mesures.

La station de base émet des signaux de référence (RS – Reference Signal) permettant d’estimer la qualité du lien du canal radio. Un signal de référence (RS) est un signal émis par l’émetteur et connu par le récepteur, ce signal ne transmet aucune information. Cependant, le récepteur compare la séquence reçue à la séquence émise (donc en clair la séquence que le récepteur aurait dû recevoir dans l’idéal) et à partir de la différence entre les deux, le récepteur estime la déformation apportée par le canal de transmission (multi-trajets, effets de masque, atténuation, interférences, …).

Cette séquence connue est émise sur toute la cellule, il s’agit d’un signal broadcasté spécifique par cellule.  Par conséquent il doit être émis avec une puissance suffisante pour couvrir la cellule et avoir des propriétés particulières (puissance constante par exemple, autocorrélation nulle, faible intercorrélation) pour différencier le signal reçu d’une cellule à une autre. Dans le cadre du LTE, les séquences utilisées sont des séquences de Zadoff-Chu transmise sur une modulation QPSK. Le motif est identique à chaque sous trame, à un décalage en fréquence près entre les cellules de manière à limiter l’interférence et améliorer ainsi la réception du RS. La puissance du CRS peut aussi être augmenté en cas de fort trafic (et donc d’interférence) par rapport à la puissance des données via le Power Boosting pour la voie descendante.

L’UE quant à lui envoie un signal de référence de sonde, nommé SRS permettant à l’eNB de déterminer la qualité du canal montant et de maintenir la synchronisation

Les mesures effectuées (signaux de référence aussi appelés pilotes– CRS – Cell Reference signal indiquant que le signal de référence est spécifique à la cellule) sont relayées aux couches supérieures afin de planifier des Handovers (Intra-inter cellules et inter RAT c’est-à-dire d’autres technologies comme la 3G, le Wi-FI, …).

L’UE se sert des mesures des signaux de référence afin d’estimer (indicateur) le niveau du signal reçu (RSRP) permettant ainsi, en mode de veille, de sélectionner la meilleure cellule. La mesure impacte donc la gestion de la mobilité de l’UE (RRM : Radio Ressource Management)

Pour être plus pragmatique, je vous propose de d’expliciter l’image suivante en définissant les informations lues sur le mobile suivant :

 

Dans un prochain article, je vous expliquerai les notions RSRP, RSRQ et RSSI

 

Logiciel de Simulation LTE-SIM

Panorama des logiciels

Dans le cadre de mes travaux de recherche, je souhaite m’appuyer sur des simulateurs permettant de prendre en compte à la fois la couche physique, mais aussi les couches supérieures (notamment la cross-layer MAC-RLC) et la couche applicative (QoS en fonction des services).

Il existe différents logiciels, certains payants (4G-Lab), d’autres non commerciaux (GPL). Un travail réalisé par des étudiants en Master 2 -M2 – IMMT parcours TMR à l’Université de Poitiers (SFA) ont travaillé sur le logiciel LTE-SIM (Politecnico) pour définir :

Au final, mes thématiques de recherche concernant la couche ordonnancement et gestion de puissance nécessite une modification de codes sources du programme. De plus, des limitations en terme d’interconnexion avec d’autres programmes sous Matlab me contraind d’abandonner ce logiciel.

Mais, nous souhaitions diffuser le travail réalisé, et je remercie les étudiants qui ont mené cette étude. Il est à noter que le logiciel est dorénavant en version 5 mais l’étude reste d’actualité.

Une formation est proposée pour comprendre le fonctionnement de ce logiciel vis-à-vis de la norme. Si vous êtes intéressés, contactez moi.