Les identifiants radios

Les articles précédents traitaient de la procédure de sélection et de re-sélection et le dernier article a permis de présenter les SIBs.

Nous allons maintenant nous intéresser aux identifiants de la cellule et de la station de base

  1. Cellules radioélectriques et identifiants

On appelle cellule radio ou secteur, la zone de couverture radio d’une station de base sur une bande de fréquences (carrier).

Une station de base 4G, nommée eNB, qui supportent plusieurs porteuses couvrent plusieurs cellules (au moins une cellule par porteuses et dans la limite de 256 cellules). Dans le cas général, une station de base 4G propose 5 bandes (bandes B1, B3, B7, B20 et B28) et 3 secteurs par bandes, aura donc 15 cellules.

Une station de base eNB est composée de deux unités : L’unité de bande de base BBU et une tête radio dépotée RRU ou RRH. Par conséquent, il est théoriquement possible que la station de base propose des points d’accès radioélectrique (Multi Transmission Point) et couvrent ainsi plus que 3 secteurs.

Une station de base gNB est décomposée de 3 unités : L’unité centralisée CU, l’unité distribuée DU et une tête radio déportée. Si les unités CU et DU sont centralisées, le nombre de cellules sera limités à 16 mais dans le cas ou le CU et DU sont délocalisées, et qu’un CU contrôle plusieurs DU, 14 bits sont réservés pour l’identification des cellules. Un CU peut contrôler jusqu’à 250 DU et un DU peut avoir 12 cellules, soit 3000 cellules En réservant 14 bits pour l’allocation des cellules, on peut ainsi identifier 16384 cellules.

  1. Les identifiants radio

II-1) PCI

En mode de veille, le mobile est sous la couverture d’une cellule : le mobile est sous un secteur de la station de base et est accroché sur une bande de la station de base. En étant synchronisé sur cette bande, le terminal récupère l’identifiant PCI de la cellule partir du signal de synchronisation primaire et secondaire (1 à 504). L’identifiant PCI est l’identifiant physique de la cellule, et dans la planification des cellules, il faut éviter la collision des PCI [2] entre les secteurs de même bande, de deux stations de base voisines.

On parle de collision quand deux cellules voisines avec le même PCI et de confusion pour le mobile pour lequel deux cellules de la même bande ont le même PCI.

La station de base qui dispose de plusieurs bandes émet le même PCI par bande.

L’identifiant PCI permet donc d’identifier une station de base

Figure 2 : Capture NEMO sur Paris

Note de M Lagrange : L’identifiant PCI permet donc d’identifier une station de base dans une zone géographique donnée. S’il y a une zone où un terminal peut détecter 2 stations de bases différentes, les PCI doivent être différents. En revanche, il n’y aucun problème pour qu’une cellule à Rennes et une cellule à Châtellerault utilisent le même PCI (ex PCI = 218 chez SFR)

Figure 3 : Les cellules dont la valeur PCI = 218 (SFR) [4]

II-2) Identifiant de la station de base et des cellules 4G (5G NSA) : eNB ID (en-gNB ID) , GeNBID, ECGI

Un petit rappel sur le réseau d’accès radio 2G/3G

L’identifiant CGI (Cell Global Identification) est utilisé sur les réseaux d’accès 2G/3G pour identifier de manière unique la cellule. Une cellule est identifié par l’identifiant CI, celui-ci doit être unique dans un LAC donné. Ainsi le CGI est obtenu par le LAI (MCC|MNC|LAC) | CI

Figure 3 : L’identifiant CGI [2]

L’identifiant eNB ID (eNB Identifier) permet d’identifier l’eNB d’un réseau PLMN.

L’identifiant en-gNB ID (en-gNB Identifier) permet d’identifier la station de base en-gNB dans le cas du déploiement 5G NSA

L’identifiant GeNB ID (Global eNB ID) permet d’identifier de manière unique une station de base. Il s’obtient en concaténant l’identifiant réseau PLMN (MCC|MNC) avec l’identifiant eNB ID

L’identifiant eCGI (E-UTRAN CGI) est utilisé sur les réseaux d’accès 2G/3G pour identifier de manière unique la cellule.

Figure 3 : L’identifiant eCGI [2]

Dans le cas des réseaux privés SNPN ( Standalone Non-Public Networks) l’identifiant du réseau NID (Network Identifier) est inclus dans l’identifiant ECGI.

 

Application

L’identifiant ECGI (E-UTRAN CGI) permet d’identifier la cellule de manière unique. L’ECGI est construit en concaténant le MCC|MNC avec l’identifiant ECI.

L’identifiant ECI est construit par l’identifiant de l’eNB nomme eNB-ID et l’identifiant CI de la cellule.  Nous savons qu’un eNB peut avoir au plus 256 cellules. L’identiant de la cellule CI est codé sur 8 bits, donc l’identifiant ECI est égale à 256*l’identifiant eNB + l’identifiant de la cellule CI

Figure 3 : Exemple de trace avec l’application Network Cell Info Lite

Dans l’exemple de la figure 3 (extrait Internet), nous avons les valeurs suivantes :

eNB ID = 87 541

CI (LCID : Long Cell ID) 4

  • eNB ID | CI = 87541*256+4 = 22 410 500

eCGI = 310 -260 – 22 410 500

 

II-3) Identifiant de la station de base et des cellules 5G : gNB ID et NCGI

L’identifiant NCGI (NR Cell Global Identifier) est similaire à l’identifiant ECGI en concaténant l’identifiant PLMN du réseau 5G avec l’identifiant de la cellule 5G NCI.

L’identifiant NCI est constitué de 36 bits correspond à la concaténation de l’identifiant gNB ID et de la cellule CI.

  • L’identifiant gNB est de taille variable entre 22 bits et 32 bits
  • L’identifiant NCI est donc aussi variable entre 14 bits et 4 bits

Figure 4 : Les identifiants gNB Id et NCGI [3]

 

A partir de l’identifiant du gNB et de l’identité de la cellule, on peut donc calculer le NCI [3][4]

Références

[1] TS 23.003 Numbering, addressing and identification  https://www.etsi.org/deliver/etsi_ts/123000_123099/123003/16.04.00_60/ts_123003v160400p.pdf

[2] Les images sont extraites du site : https://telecommunications4dummies.com/2021/01/31/pci_rules/

[3] https://www.techplayon.com/5g-nr-cell-global-identity-planning/

[4] https://enb-analytics.fr/page_recherche_analyse.html

Le découpage des fonctions gNB : 3GPP et O-RAN

Introduction

Au cours des 5 précédents articles, nous avons vu les sous-couches protocolaires mises en œuvre au niveau de la station de base gNB.

L’entité gNB a été présentée comme une entité monolithique, le standard 3GPP présente la pile protocolaire et les interfaces entre l’UE, la station de base et le cœur de réseau.

Afin d’apporter plus de souplesse, le standard 3GPP propose de découper l’entité gNB en deux unités : une unité distribuée DU (RLC, MAC et Radio) et une unité centralisée CU (RRC et SDAP/PDCP).

Ce découpage définit de nouvelles interfaces (F1) et de nouvelles liaisons (fronthaul, midhaul et backhaul [1]) comparativement au découpage RU et BBU en 4G LTE.

Figure 1: Le découpage d’une station de base eNB et d’une station de base gNB

II) L’architecture 3GPP

L’architecture du gNB est représentée sur la figure suivante [2]

Figure 2 : Architecture gNB (Rahim Navaei) [2]

On sépare le plan de contrôle (Control Plane) et le plan utilisateur (User Plane) (CUPS : Control User Plane Separation).

Au niveau du cœur de réseau, la 3GPP défini une architecture SA en introduisant les interfaces basées sur le service (SBI) et en utilisant le protocole http2 et des API. L’architecture SBA est Cloud-native.

Au niveau de l’accès radio, la décomposition du la BBU en CU et DU et l’évolution de l’eCPRI permet de faciliter le déploiement de la virtualisation de la partie radio (O-RAN).

Dans le plan de contrôle, la figure 2 fait apparaitre un nouveau protocole F1AP entre le gNB-CU et le gNB-DU et un nouveau protocole E1AP sur l’interface E1 entre le gNB-CU du plan de contrôle et le gNB-CU du plan utilisateur.

Les fonctions sur le plan de contrôle F1AP permettent de gérer l’interface (établissement, re-initialisation, achèvement de l’interface F1) et porte les messages de contrôle RRC pour la gestion du contexte utilisateur (via le message F1AP UE Context), la gestion des systèmes d’informations MIB/SIB, le paging et l’allocation d’un numéro de tunnel TEID pour le plan d’acheminement entre le gNB-CU UP et l’UPF.

Le plan d’acheminement est injecté à travers la fonction E1AP. Les fonctions E1AP permettent de gérer l’interface (établissement, re-initialisation, achèvement de l’interface E1) et de gérer le bearer (via le message E1AP Bearer Context).

A titre d’exemple, en cas de Handover, la reconfiguration radio est déclenchée par l’unité gNB-CU de la station de base source et implique une modification du contexte entre l’unité DU source et l’unité DU cible.

Figure 3 : Les messages en cas de HandOver

 

III) L’architecture O-RAN

L’alliance O-RAN (Open Radio Access Network) propose une décomposition des fonctionnalités de la station de base en micro-services.  La première étape consiste à découper le bloc monolithique de l’entité gNB en fonctions réseaux virtualisables et inter-opérables.

La solution Cloud-Native est adoptée et plusieurs options sont possibles quand à l’implémentation RAN en micro-services : conteneurs, K8s K3s ou VM.

Amazon propose les solutions ECS (Elastic Container Service), EKS (Elastic Kubernetes Services – EKS Distro ou EKS Anywhere) [3]

L’alliance O-RAN définie (figure 1) une architecture O-RAN composée de 9 fonctions réseaux et 19 interfaces. En se basant sur l’architecture 3GPP, l’alliance O-RAN vise à définir une architecture ouverte et interopérable.

Figure 4 : Architecture O-RAN [3]

Les interfaces E2 et O1 permettent d’améliorer la gestion de l’accès radioélectrique et d’automatiser le déploiement d’instances en se basant sur des outils d’optimisation et d’automatisation radio (avec l’utilisation de l’apprentissage Machine Learning et l’optimisation par l’IA).

Le découpage des fonctions O-CU, O-DU et O-RU est standardisé par l’alliance O-RAN. La 3GPP qui propose un découpage du gNB en deux unités DU et CU est représenté par l’option 2 du standard O-RAN.

Figure 5 : Le découpage en fonction de l’architecture O-RAN [4]

L’architecture O-RAN comprend 3 niveau (three tiers) :

L’infrastructure O-Cloud contient les serveurs physiques et les fonctions réseaux.

L’orchestrateur SMO (Service Management and Orchestration Framework) fournit les services de gestion des instances, en apportant les fonctionnalités pour la gestion des slices, la gestion des services de transports de données. Le SMO peut être la plateforme ONAP (Open Network Automation Platform).

Le contrôleur RIC (non-real time and near-real time RIC) a pour objectif d’optimiser les fonctions réseaux RAN pour la gestion de la mobilité des utilisateurs (non real time RIC), le contrôle de l’admission radioélectrique (non real time RIC) et la gestion des interférences (near-real time RIC. Le contrôleur utilise les outils ML/IA pour prédire et optimiser la gestion de l’accès radioélectrique et a pour objectif de contrôler les unités O-DU et O-CU pour la gestion de la QoS.

 

[1] TS 38.401

[2] Rahim Navaei :  https://www.linkedin.com/feed/update/urn:li:activity:7018462941226098688/

[3] https://docs.aws.amazon.com/whitepapers/latest/open-radio-access-network-architecture-on-aws/open-radio-access-network-architecture-on-aws.html

[4] TR 38.801

La spécification O-RAN : le decoupage 7.2

Dans cet article, nous allons nous intéresser à la spécification O-RAN et plus particulièrement à la partie de découpage de la couche basse LLS (Low Layer Split) c’est-à-dire à la séparation des fonctions entre l’unité radio RU et l’unité distribuée DU. Il existe plusieurs options numérotées de 1 à 8 décrivant un découpage entre les fonctionnalités intégrées à l’unité RU (Radio Unit), DU (Distributed Unit) et CU (Central Unit) faisant ainsi apparaitre de nouvelles interfaces (fronthaul/midhaul/backhaul).

Figure 1 : Le découpage radioélectrique et les interfaces

L’option 7.2 propose un découpage de la couche physique basse (LLS ) au niveau du RU et la couche physique haute au niveau du DU. Elle est souvent associée à l’option 2 pour le CU.

 

Figure 2 : L’architecture protocolaire de la station de base et l découpage des fonctions radio

Le découpage a un impact sur les performances de transmission :

Figure 3 : Le découpage et la qualité de service

L’interface entre l’unité RU et DU est nommée fronthaul et les données utilisateurs ainsi que la manière dont les données seront émises (mode de transmission) sont transportées par un bus série eCPRI. Pour pouvoir gérer les données, le fronthaul transporte également une couche de gestion et une synchronisation.

Figure 4 : L’interface Open-Fronthaul [1]

La transmission des données du plan de contrôle et le plan utilisateur entre l’unité O-RU et l’unité O-DU est gérée au niveau de la couche 2 avec un service l2VPN VPWS ou eVPN VPWS, les données du plan de gestion sont transportées par le protocole IPv4 ou IPv6.

Figure 5 : Le transport des plans de données et de gestion entre le DU et le RU

L’unité radio converti le signal numérique en signal radio et inversement. Les fonctionnalités dédiées à l’O-RU pour le découpage O-RAN version 7.2 :

  • Synchronisation (GPS/IEEE 1588) et transport Fronthaul (eCPRI)
  • Gestion de la couche physique basse (FPGA ou ASIC)
  • Front end (radio et numérique) : Convertisseur et pre-distorsion, amplificateurs

Figure 6 : l’architecture physique de l’O-RU [2]

Pour résumer, voici les principaux avantages et inconvénient du découpage des fonctions :

Figure 7 : Les avantages et inconvénients du découpage (source CISCO)

Le découpage 7.2 présente quatre avantages :

  1. Le transfert des données du plan utilisateur correspond à des éléments de ressources ce qui permet de gérer la correspondance des données (RE Mapping) au niveau du DU et limite le nombre de message de contrôle vers le RU ;
  2. L’adaptation de la bande de transport des données est basée sur le nombre de flux (stream) et non sur le nombre d’antennes :
  3. La gestion des faisceaux peut être numérique/analogique ou hybride.
  4. La simplification de la gestion de l’interférence intercellule ICIC et de la coordination multipoint (COMP) qui est gérée au niveau de l’unité DU

De plus, concernant le découpage 7.2, deux modes distincts de fonctionnement ont été définis selon que la précodage est situé au niveau de l’O-RU ou de l’O-DU

  • O-RU catégorie A

Le précodage est réalisé au niveau du DU. L’interface fronthaul transporte des flux séparés spatialement (stream). Cela peut nécessiter une charge plus élevée par rapport au transport d’une couche. Le Beamforming Numérique et analogique sont optionnels

  • O-RU catégorie B

Le précodage est réalisé au niveau du RU. L’interface fronthaul transport une couche réduisant ainsi la charge de la payload par rapport à la cat A mais le codeur est plus complexe. Le Beamforming Numérique et analogique sont optionnels

Pour comprendre la différence entre les deux catégories, il est intéressant de reprendre le schéma d’une chaîne de transmission MIMO :

Figure 7 : le synoptique d’une chaîne de transmission MIMO

Une couche est définie comme un chemin d’entrée de codage et de modulation vers le codeur MIMO. Un flux est défini comme la sortie de l’encodeur MIMO qui est ensuite traitée via la formation de faisceau ou le bloc de précodeur.

Figure 8 : Les deux catégories A/B du découpage radio fonctionnelle 7.2 [3]

La catégorie A permet de simplifier la conception de la partie radio (figure 8), laquelle n’a pas à gérer la matrice de précodage sur les flux.

L’exemple suivant (figure 4) présente la cas du MIMO. Figure 9: Découpage fonctionnel 7.2

A travers le plan de contrôle C-plane, l’unité O-DU informe l’unité O-RU du traitement à accomplir en transmettant le précodage a effectuer.

Figure 10 : La gestion du BeamForming selon la matrice de précodage calculée au niveau de l’unité O-DU[3]

 A partir de la solution XILINX [2], nous allons voir le découpage fonctionnel de l’unité O-RU cat B connectée à une antenne massive MIMO 64T64R.

L’unité O-RU est composée de 5 sous unités :

  • Une sous unité d’interface ISU (Interface SubUnit)
  • Quatre sous unité radio RSU (Radio SubUnit)

L’unité ISU reçoit des trames eCPRI via l’interface ethernet, et récupère la payload, c’est-à-dire les symboles I/Q. Les symboles sont multipliés par la matrice de précodage H18×64 permettant de générer 64 flux qui seront répartis sur les 4 sous unités radio RSU.

Chaque RSU traite en parallèle les 16 flux en réalisant l’IFFT sur le signal I/Q et en ajoutant le préfixe cyclique, puis une calibration, et un premier convertisseur en fréquence (DUC : Digital Up Converter) et une pré-distorsion (PDP) et/ou une réduction du facteur crête (CPR Crest Factor Reduction) est effectuée avant amplification.

Figure 11 : Le synoptique et l’implémentation Xilinx du O-RU

La partie antennaire est composée de brin rayonnants avec deux polarités, chaque RSU gère un panneau antennaire. L’antenne est constituée de 4 panneaux.

Sur la figure 12, il y a 128 éléments d’antennes pour 64 émetteurs/récepteurs (transceiver 64T64R) en connectant deux éléments d’antennes de même polarité au même port d’antenne.

Figure 12 : Antenne Massive MIMO avec 128 éléments rayonnants

 

[1] https://www.youtube.com/watch?v=KAW4LHK31Ek
[2] https://www.techplayon.com/o-ran-open-radio-unit-o-ru-reference-architecture/
[3] https://online-events.keysight.com/keysight-technologies7/Massive-MIMO-O-RAN-Radio-Units-O-RU-Design-and-Conformance-Test-Challenges?show_live_page=true&add_to_calendar=true&bmid=4f5ae43d7e8c

 

 

Le réseau de liaison terrestre et d’accès intégré IAB – Integrated Access Backhaul

Introduction

Le réseau d’accès radioélectrique NG-RAN est composé de nœuds radioélectriques permettant la transmission de flux à très haut débit. Selon la spécification TS 38.300, le nœud NG-RAN peut être une station de base gNB (avec une interface radioélectrique 5G-NR) ou une station de base ng-eNB (avec une interface radioélectrique 4G-LTE).

Pour apporter plus de flexibilité et optimiser le transport de données à très haut débit, la spécification 3GPP TS 38.804 propose une division fonctionnelle des éléments de la BBU en deux unités CU et DU.

Un nœud gNB (ng-eNb) est composé d’une unité centrale (CU, Central Unit), et d’un ensemble d’unités distribuées (DU, Distributed Unit) et d’unité radio RU (Remote Unit) ou AAU (Activa Antenna Unit). Certaines fonctions de la couche physique de bas niveau peuvent être détachées du DU et implémentées dans une unité radio distante (RU, Remote Unit).

L’interconnexion entre les différentes entités (coeur de réseau, CU, DU et tête radioélectriques) sont assurées par des liens en fibre optique.

Le réseau de transport 5G est constitué de 3 segments :

  • le backhaul est la liaison entre le CU et le cœur du réseau (5GC). Il est généralement implémenté à l’aide des technologies de transport optique à très haut débit de type WDM (Wavelength Division Multiplexing) ;
  • le midhaul entre le CU et le DU. La liaison midhaul est une liaison IP/Ethernet qui transporte le trafic de données (F1-U) et de signalisation (F1-C) de l’interface F1;
  • le fronthaul entre le DU et le RU via le déploiement des réseaux optiques ODN (Optical Distribution Network) ou FTTH (Fiber To The Home).

Dans les zones denses, pour éviter la saturation des stations de base, l’opérateur doit rajouter des points de transmission. La multiplication des unités radio distante nécessite le déploiement d’une infrastructure en fibre optique (RoF : Radio Over Fiber). Pour simplifier le déploiement de nouveaux points de transmission, la 3GPP propose la solution de relais radioélectrique IAB (Integrated Access Backhaul).

Dans cet article, nous allons détailler le déploiement de relais par la mise en place d’une lien radioélectrique backhaul entre la station de base initiale et les relais.

  1. Architecture gNB

Le nœud NG-RAN est constitué de deux unités : une unité centralisée CU (Centralized Unit) et une unité distribuée DU (Distributed Unit). L’une et l’autre communiquent par une interface F1.

L’unité gNB-CU contrôle plusieurs unités DU et une unité DU n’est contrôlée que par une seule unité CU.

De par la décomposition fonctionnelle entre les données de signalisation (control plane) et les données de trafic (user plane), une station de base peut être constituée :

  • pour l’unité CU : d’un unique gNB-CU-CP et de plusieurs gNB-CU-UP ;
  • pour le module DU, de plusieurs gNB-DU.

Figure 1 : Architecture d’un nœud NG-RAN

L’organisme de normalisation 3GPP propose plusieurs découpages fonctionnels entre les entités gérées au niveau de l’unité CU et celles gérées au niveau de l’unité DU. La figure 1 correspond à l’option 2. La figure 2 présente les 8 découpages possibles.

Figure 2 : Les options de découpage CU/DU

Cette décomposition apporte un nouveau lien entre l’unité CU et l’unité DU. Ce lien est nommé midhaul.

L’organisme de normalisation 3GPP a retenu dans un premier temps (R.15) l’option 2 avec l’introduction de l’interface F1 sur le lien midhaul entre les unités DU et CU.

Figure 3 : Le découpage fonctionnel de la station de base (Nokia)

Le lien fronthaul est la connexion entre l’unité de bande de base (BBU) et la tête radioélectrique déportée (RRH). Ce lien s’appuie sur une connexion en fibre optique. Différents protocoles d’interfaces de réseau fronthaul ont été spécifiés comme le protocole OBSAI et le protocole CPRI. Le protocole CPRI est apparu en 2003 pour connecter les stations de bases BBU aux têtes radioélectriques déportées RRH. Le lien CPRI est mis en œuvre pour l’interconnexion entre le RRU et le BBU 4G et 5G-NSA. Il s’agit de l’option 8.

L’arrivée de nouvelles technologies antennaires comme le massive MIMO permet d’augmenter considérablement les capacités de transport sur l’interface CPRI. Pour réduire cette forte augmentation en débit, le protocole eCPRI, défini en 2017, réduit cette tension en débit de transmission grâce à une décomposition fonctionnelle plus flexible de la partie BBU. Le protocole eCPRI identifie trois plans nécessaires à l’interaction entre l’équipement radioélectrique eRE et l’équipement de contrôle eREC. Ces trois plans sont les suivants : le plan utilisateur, le plan de synchronisation, et le plan de contrôle et gestion. La synchronisation est essentielle pour le mode de duplexage temporel.

La flexibilité est aussi apportée par les fonctions de virtualisation réseau NFV. Les 8 options peuvent facilement se déployer par la virtualisation de l’accès radioélectrique (V-RAN) : Les entités fonctionnelles de l’unité DU et/ou de l’unité CU peuvent être intégrées à l’entité physique RU, l’entité physique DU peut être combinée à l’entité physique CU, ou bien chaque entité matérielle peut fonctionner de manière indépendante à des emplacements séparés. Dans chacun de ces cas, le backhaul fournit toujours le lien établissant la connexion au backbone.

Le terme crosshaul (ou x-haul, ou xhaul) désigne indépendamment lien fronthaul, midhaul ou backhaul.

Figure 4 : Différentes options du découpage fonctionnel de la station de base

En Juin 2018, l’alliance O-RAN a été créée pour standardiser l’interconnexion des différentes interfaces en fonction des 8 découpages proposés. Le but est de permettre la migration des entités du réseau d’accès radioélectrique indépendamment du ou des fournisseurs.

Si la fibre optique est le média de transport favorisé, la densification des stations de base consécutive à l’exploitation des bandes millimétrique pose le problème de connectivité entre les nouvelles antennes et le cœur de réseau.

Pour résoudre ce problème et pour réduire les couts de déploiement (CAPEX), le standard 3GPP propose (dans la spécification R.16) la mise en place d’une solution de connectivité IAB (Integrated Access Backhaul), se substituant ainsi à la solution sur Fibre Optique pour le réseau d’accès.

 

 

 

 

E2E Network Slicing : le découpage du réseau de bout en bout (Partie 3)

Voici la troisième et dernière partie

E2E Network Slicing : le découpage du réseau de bout en bout (Partie 1)

E2E Network Slicing : le découpage du réseau de bout en bout (Partie 2)

IV) La virtualisation de l’accès radio

IV-1) Description des fonctionnalités de la station de base

Le découpage du réseau est une tranche de bout en bout comme le montre la figure 13.

Figure 13 : Le découpage du réseau de bout en bout.

Les fonctionnalités réseaux sont partagées au niveau du cœur de réseau (SNI CN) et de l’accès radioélectrique (SNI RAN). Nous allons maintenant nous intéresser au découpage sur l’infrastructure radioélectrique et à la gestion de ressources.

Une station de base 5G réalise les tâches suivantes :

  • fonction RRM pour la gestion de ressources radioélectriques : Contrôle du support radioélectrique, contrôle d’admission radioélectrique, contrôle de la mobilité pour les mobiles connectés, allocation dynamique des ressources radioélectriques dans le sens montant et descendant (ordonnancement) ;
  • compression d’entêtes IP, chiffrement et intégrité des données ;
  • sélection de la fonction AMF lors de l’attachement du mobile ;
  • routage des données du plan de transport dans un tunnel ;
  • routage des informations de signalisation vers la fonction AMF ;
  • établissement et libération de la connexion ;
  • mesures radioélectriques et configuration du rapport de mesures demandé au mobile ;
  • ordonnancement et transmission des informations de diffusions SIB (System Information Block);
  • marquage des paquets dans le sens montant (étiquettes DSCP) ;
  • gestion des sessions ;
  • support du découpage en tranche de réseaux ;
  • gestion de la QoS et correspondance entre les flux IP provenant du plan de transport UPF en support radioélectrique ;
  • partage de l’accès radioélectrique ;
  • gestion de la double connectivité ;
  • interfonctionnement entre les fonctions 5G-NR et 4G-LTE.

Pour réaliser ces tâches, la station de base s’appuie sur la pile protocolaire présentée sur la figure 14. La station de base 5G peut également se décomposer en deux unités : une unité centralisée gNB-CU et une unité distribuée gNB-DU).

Figure 14 : Présentation de la pile protocolaire de la station de base 5G

La spécification 3GPP propose le découpage du plan de contrôle (RRC) et du plan de trafic IP (SDAP). La signalisation et les données sont gérées par la couche de niveau 2 décomposée en trois sous-couches : PDCP, RLC, MAC et par la couche physique.

La couche physique réalise la modulation et la démodulation de données des signaux sur l’interface radioélectriques.

Le rôle de la sous-couche MAC est de faire :

  • la correspondance entre les canaux logiques et les canaux de transport ;
  • le multiplexage/démultiplexage des unités de données MAC SDU en provenance d’un canal logique ou de plusieurs canaux de transport (TB) ou de plusieurs canaux de transport à destination des canaux logiques ;
  • la correction d’erreur rapide HARQ ;
  • la gestion de priorité entre les mobiles ;
  • la gestion de priorité sur les canaux logiques pour un mobile.

Le rôle de la sous-couche RLC est de faire :

  • le transfert des paquets PDU issu de la couche supérieure ;
  • une numérotation des séquences RLC pour le mode sans acquittement UM et avec acquittement AM;
  • la correction d’erreur ;
  • la segmentation/re-segmentation des données ;
  • la détection d’erreur (pour le mode AM).

Le rôle de la sous-couche PDCP est de faire pour le plan utilisateur :

  • la numérotation de séquence ;
  • la compression et décompression d’entête ;
  • le transfert des données ;
  • la détection des paquets dupliqués et la mise en ordre ;
  • le routage des bearer PDCP PDU dans le cas de la double connectivité ;
  • le chiffrement/déchiffrement et la protection d’intégrité;
  • le rétablissement des données PDCP et la récupération des données pour le mode RLC ;
  • la duplication des paquets PDCP PDU.

Le rôle de la sous-couche SDAP est :

  • la correspondance entre la QoS d’un flux IP et le support radioélectrique ;
  • le marquage de l’identité de la QoS sur les paquets UL.

Le partage de la station de base gNB en deux unités gNB-DU et gNB-CU est spécifié par le standard 3GPP lequel propose différentes options. Toutefois actuellement le gNB reste mono-constructeur même en cas de découpage en deux sous unités gNB-CU et gNB-DU.

Les différentes options sont proposées sur la figure 15 :

Figure 15 : Le découpage des fonctions du gNB

A titre d’exemple, on pourrait imaginer le découpage suivant :

Figure 16 : Un découpage du gNB

Actuellement (standard R.15) l’unité gNB-CU est composée de la sous-couche RRC/SDAP et PDCP, l’unité gNB-DU est composée des sous-couches RLC et MAC et physique. Mais les autres partages de fonctions décrites sur la figure 11 peuvent virtuellement être mise en œuvre.

La couche physique a pour rôle de transférer le signal issu de la couche MAC (le bloc de transport) en un signal RF et inversement récupérer un signal RF pour l’envoyer vers la couche MAC.

La couche physique se compose de plusieurs fonctions :

  • code détecteur d’erreurs CRC ;
  • code correcteur d’erreur et adaptation de débit ;
  • embrouillage ;
  • modulation ;
  • affectation des symboles par sous-couches antennaires ;
  • précodage numérique ;
  • affectation des signaux et canaux sur chaque élément de ressources ;
  • transformée de Fourier Discrète et insertion d’un préfixe cyclique ;
  • chaîne RF (convertisseur CNA, conversion RF, amplification).

Les signal RF est envoyé à l’antenne.

La tête radioélectrique déportée (RRH) correspond à la chaîne RF. Pour la 4G, l’entité eNB se composait de deux parties : BBU et RRH. Cette option est maintenue pour la 5G (option 8) toutefois, le débit du bus série CPRI (Common Public Radio Interface) qui transporte les symboles I/Q est d’autant plus élevé que :

  • la bande de fréquence est importante (cellule principale et secondaire en cas d’agrégation de porteuses) ;
  • le nombre d’antennes est élevé (FD-MIMO ou Massive MIMO).

Pour réduire le débit entre le gNB-DU et la tête radioélectrique déportée, il est également prévu de proposer un découpage au niveau de la couche physique différent (figure 17) :

Figure 17 : Les options de décomposition de la station de base gNB

Le transport des données sur les interfaces optionnelles est normalisé par le protocole eCPRI  (evolved Common Public Radio Interface) et est véhiculé sur une fibre optique.

La gestion des ressources radioélectrique (protocole RRM) est réalisée par la station de base gNB. La gestion des ressources radioélectrique a pour objectif :

  • de gérer le spectre de fréquence : cette fonction décide comment les ressources spectrales sont réparties en porteuses 5G-NR et comment ces porteuses sont allouées aux différents site;
  • de gérer l’interférences entre cellules (mécanisme ICIC). Dans la continuité de la gestion du spectre, le mécanisme ICIC impose une puissance limitée sur un ensemble de sous-porteuses afin d’éviter les interférences avec un point de transmission voisin utilisant les mêmes sous-porteuses ;
  • d’ordonnancer les paquets : cette fonction décide, pour chaque porteuse 5G-NR affectée à une cellule, quelles sont les ressources bloc (RB) disponibles pour transférer les paquets sur chaque bearer radioélectrique établi ;
  • de réaliser les fonctions liées à la prise en charge radioélectrique tels que le contrôle de bearer, le contrôle d’admission radioélectrique, le contrôle de la mobilité (lorsque le mobile est en mode connecté).

L’implémentation logicielle de la partie RRM n’est pas du ressort de la 3GPP, c’est pour cela qu’il n’est pas envisageable d’avoir une unité gNB-CU et gNB-DU de deux équipementiers différents.

IV-2) La virtualisation de la station de base : C-RAN

Le point de départ consiste à respecter le contrat SLA et d’apporter la QoE défini par le contrat. Ce contrat peut concerner la QoS pour un utilisateur. Toutefois, la virtualisation et l’isolation des slices permet à l’opérateur de louer les services de la station de base à des opérateurs virtuels ou à des entreprises.

Pour des entreprises privées, cela revient à mettre en place un DAS et la station de base est uniquement dédiée à l’entreprise.

Pour les opérateurs, il est possible de faire un partage de l’accès radioélectrique (Shared RAN) connecté directement au cœur réseau des différents opérateurs (MOCN : Multi-operator Core Network).

Jusqu’à présent, les stations de base étaient des entités physiques (PNF) installées au niveau de l’antenne. Ainsi, la gestion du spectre (contrôle d’admission, séquencement), la gestion des acquittements (HARQ/ARQ), le chiffrement étaient réalisés localement.

Dans le cas où l’entité est physique (PNF) alors les ressources matérielles de la station de base (CPU/RAM/Carte réseaux) doivent gérer les différents services (eMBB/mMTC pour la 4G).

Le découpage de la station de base en deux unités permet de mieux allouer les ressources matérielles aux fonctions protocolaires de la station de base. Excepté la tête radioélectrique déportée, les fonctionnalités de la station de base gNB-CU et gNB-DU sont toutes virtualisables.

La virtualisation est demandée par le support opérationnel OSS/BSS qui utilise le gabarit NST du slice pour imposer à l’orchestrateur (MANO ou ONAP) de gérer le cycle de vie dans l’instance virtuelle.

L’alliance O-RAN  portée par les opérateurs propose une normalisation (figure 18) sur la gestion du slice RAN. L’orchestrateur dispose d’un contrôleur SDN nommé RIC non-RT (RAN Intelligent Controller non Real Time) permettant de configurer le déploiement, la mise en échelle ou le relâchement de la sous-instance radioélectrique par un découplage du plan de contrôle et du plan utilisateur.

Figure 18 : Le fonctionnement du Cloud-RAN

La virtualisation du RAN est réalisée en suivant le protocole NFV de l’ETSI. Nous n’aborderons pas ici les solutions OpenSource existantes (OPNFV, OpenStack, QEMU, …).

Pour l’alliance O-RAN,

  • Le RIC non-RT a pour objectif le respect du SLA et de la supervision en gérant le déploiement, la mise à l’échelle ou la libération des sous-couches de virtualisations radioélectrique SNI.
  • Le contrôleur RIC near RT gère les ressources radioélectrique (fonctionnalités RRM) en proposant un découpage fonctionnel entre l’unité gNB-CU et les entités gNB-DU.

La configuration des gNB permet de définir la liste des services S-NSSAI supportés par le gNB par une procédure de configuration du paramétrage des stations de base (cf. figure 8). Cette phase de provisionning est gérée au moment de la création du slice radioélectrique (figure 19).

Figure 19 : La configuration des slices supportées par les gNB

Lorsque le gNB s’active, il informe la fonction AMF de l’ensemble des slices supportés avec la localisation TAC correspondante. Si la station de base est connectée à plusieurs fonctions AMF, alors elle transmet l’information à toutes les fonctions AMF. Chaque fonction AMF l’informe en retour des services S-NSSAIs supportés par la fonction AMF.

Au niveau du gNB, le découpage entre le gNB-DU et le gNB-CU est ordonné au niveau du contrôleur RIC-near RT. Un descripteur de slice permet de définir les fonctions gérées au niveau de chaque unité (gNB-CU et gNB-DU).

Une entité gNB peut supporter plusieurs slices. Le découpage entre gNB-CU et le gNB-DU est identique pour chaque slice par contre les fonctions utilisées sur chaque sous-couches peuvent être communes ou spécifiques. Par exemple, il est possible de définir un slice pour les terminaux statiques et de désactiver la fonction handover pour ce slice.

Figure 20 : La mise en place de plusieurs slices au niveau d’un gNB

On définit ainsi le comportement attendu pour chaque sous-couche et lorsque le mobile fera une demande de connexion radioélectrique, le message RRC transmis du mobile à l’entité gNB-CU contiendra l’information S-NSSAI du slice demandé. Ainsi, lors de la connexion radioélectrique, l’entité gNB créera un context UE avec le numéro de slice correspondant (figure 21).

 

Figure 21 : L’identification du slice

IV-3) Exemple de C-RAN

L’objectif de la virtualisation consiste à répartir la charge sur différents serveurs en fonction de la QoE demandée.  Ainsi :

  • Pour les terminaux IoT, la station de base devant couvrir une superficie sur laquelle on peut avoir 1 million d’IoT par km2 (ce chiffre est la limite haute du standard), les ressources matérielles de la station de base peuvent rapidement saturer si, il y a un réveil en cascade des terminaux IoT, ou si plusieurs terminaux sont dans le mode RRC_Inactive, ou … Il est donc recommandé de déporter les fonctions suivantes vers un DataCenter (DC) :
    • contrôle RRC de chaque terminal IoT ;
    • chiffrement/déchiffrement ;
    • segmentation, contrôle d’erreur ARQ ;
    • multiplexage, contrôle d’erreur HARQ.

En contrepartie, le fait de déporter les calculs vers le DataCenter va avoir comme incidence d’augmenter la latence, ce qui n’a aucune importante pour les terminaux IoT HLCom (High Latency Communication). En effet, la QoS pour le service IoT n’est pas la latence mais la problématique est la gestion d’un nombre très élevé de terminaux (mMTC :massive MTC).

  • Pour les smartphones eMBB, la station de base doit offrir des services avec une latence d’environ 10 ms pour le plan de trafic et 100 ms pour le plan de transport. On peut donc envisager un découpage avec l’unité gNB-CU au niveau du point de présence (PoP) sur lequel l’opérateur déploie des lames de serveurs (mini Data Center nommé MEC – Multi-access Edge Computing). Ainsi :
    • l’entité gNB-CU gère la couche RRC/PDCP haute ;
    • l’entité gNB-DU au niveau de la station de base gère les sous-couches PDCP base, RLC, MAC et physique.
  • Pour les communications critiques (URLLC et V2X), afin de réduire la latence, tout le traitement du gNB s’effectue au niveau local (près de l’antenne).

Toutefois, le mobile n’est pris en charge que par une seule paire gNB-CU et gNB-DU, le choix du gNB-CU s’effectue par rapport aux paramétrages radioélectrique du mobile sur le module USIM (PLMN), c’est-à-dire par la sélection d’un PLMN.

La tranche de réseau par PLMN est identifiée par un indicateur de slice Slide ID NSSAI. Les slices gérés par le PLMN sont stockés au niveau du gNB-CU.

L’exemple (figure 22) ci-dessous est extraite de l’article [ferrus] :

Figure 22 : Déploiement 5G-NR

La figure présente 2 PLMN différents, PLMN#A et PLMN#B.

Le PLMN#A est géré par une entité gNB monolithique déployée sur un MEC du PoP #1 puisqu’on est sur une infrastructure légère (LW NFVI)

Le PLMN#B est géré par une unité gNB-CU qui est située sur le DC du PoP #2. L’unité gNB-CU est connectée à deux unités gNB-DU, une située sur le MEC PoP#1 et l’autre sur le MEC #PoP3.

Lorsque le mobile s’allume, il cherche le PLMN correspondant, soit le PLMN#A soit PLMN#B.

On peut supposer que le PLMN#A est dédié pour l’IoT sur une bande de fréquences à 700 MHz (@RF Carrier#1), la zone de couverture est étendue (NR Cell#1). Lorsque le terminal s’allume, il scanne une fréquence basse et cherche le PLMN #A. Une fois synchronisé, il fait une demande de connexion radioélectrique avec le gNB#1.

Le PLMN#B exploite une bande de fréquence @RF Carrier#2 sur deux cellules NR Cell#2 et NR Cell#3. Lorsque le smartphone s’allume, il scanne la bande de fréquences et une fois synchronisée il fait une demande de connexion auprès du gNB-CU. Selon sa position, il fait la demande auprès du gNB-DU du PoP#1 ou du PoP#3.

Conclusion

Le découpage du réseau en tranche est constitué de deux sous instances virtuelles (NSI), une sous-instance au niveau du cœur de réseau et une sous-instance au niveau de l’accès radioélectrique.

Le mobile est enregistré sur une seule fonction AMF mais peut activer plusieurs slice simultanément. Au niveau accès radioélectrique, le mobile est géré par un unique gNB.

La figure 23 est issue d’une documentation NoKia et réprésente le découpage du réseau 5G.

La figure 24 est issu d’une documentation Samsung et réprésente le découpage du réseau, l’orchestration de bout en bout. Ce document reprend donc l’ensemble des fonctionnalités et le découpage du réseau décrit dans cet article.

Figure 23 : Un découpage de réseau de bout en bout [Nokia]

Figure 24: Un découpage de réseau de bout en bout [Samsung]

References :

Liens 3GPP :

3GPP TS 28.530 V16.1.0 : Management and orchestration; Concepts, use cases and requirements

3GPP TS 38.300 : NR; NR and NG-RAN Overall Description; Stage 2, Release 16

  • http://www.3gpp.org/ftp//Specs/archive/38_series/38.300/38300-g10.zip

3GPP TS 23.501 V16.1.0 : System architecture for the 5G System (5GS); Stage 2, Release 16

3GPP TS 29.510 V15.1.0 : 5G System; Network function repository services; Stage 3, Release 15

3GPP TS 29.531 V15.1.0 : 5G System; Network Slice Selection Services; Stage 3, Release 15

3GPP TS 28.500 : Management concept, architecture and requirements for mobile networks that include virtualized network functions, Release 15

3GPP TS 24.501 : Non-Access-Stratum (NAS) protocol  for 5G System (5GS); Stage 3;             (Release 16)

  • http://www.3gpp.org/ftp//Specs/archive/24_series/24.501/24501-g41.zip

3GPP TS 21.915 : Release Description ; Release 15

 

ETSI

Article

[ferrus] R. Ferrús, O. Sallent, J. Pérez-Romero, R. Agustí , « Management of Network Slicing in 5G Radio Access Networks: Functional Framework and Information Models ».

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2015.310_Architectural_comparison.08-2.pdf

Equipementiers

  • Huawei : 5G Network Slicing for Vertical Industries
  • Huawei : 5G Network Slicing for Cross Industry Digitization Position Paper
  • Nokia : Network Slicing in 5GS E2E
  • Samsung

 

https://www.huawei.com/minisite/5g/img/gsa-5g-network-slicing-for-vertical-industries.pdf

http://www-file.huawei.com/-/media/CORPORATE/PDF/white%20paper/5G-Network-Slicing-for-Cross-Industry-Digitization-Position-Paper.pdf

Figure 13 : https://www.5g-ks.org/pdf/Network_Slicing_in_5GS-E2E_View-Nokia.pdf

Figure 23 : https://www.5g-ks.org/pdf/Network_Slicing_in_5GS-E2E_View-Nokia.pdf

Figure 24 : https://images.samsung.com/is/content/samsung/p5/global/business/networks/insights/white-paper/network-slicing/200420_Samsung_Network_Slicing_Final.pdf