Cours Master – Chap 3 (Part 2)

L’agrégation de porteuses sur les bandes licenciées et non licenciées

3.3. Configuration : Scénarios d’Agrégations (Déploiement)

3.3.1 : Agrégation de porteuses en FDD

Afin de s’adapter aux bandes de fréquences acquises par l’opérateur, les porteuses agrégées peuvent avoir des largeurs de bande différentes. Ainsi, l’agrégation de porteuses peut s’effectuer sur :

  • Des porteuses contiguës dans une bande : Classe A
  • Des porteuses non contiguës dans une bande : Classe B
  • Des porteuses sur des bandes différentes : Classe C

 

 

Figure 3.3. Différentes classes pour le CA

 

La spécification R.10 propose 6 classes différentes pour l’agrégation de porteuses, mais seules 3 d’entre elles (Classe A, Classe B et Classe C) sont définies. Chaque classe indique le nombre de CC dans la classe (CC est soit la PCC et/ou la/les SCC) et le nombre maximum de PRB gérés par l’UE dans cette classe.

Le tableau 3.2 résume les 6 configurations possibles :

Table 3.2. Configuration des UE pour l’agrégation de porteuses

A partir de cette table, lors de la procédure d’attachement l’UE informe le MME des bandes de fréquences et de la classe qu’il supporte pour le CA. Les bandes de fréquences sont numérotées selon le tableau 3.3 (liste non exhaustive) :

Table 3.3. Canaux de fréquences (extrait TS36.101 – Table 5.5.1)

Si l’UE supporte le CA intra-bande contigüe, il indique les porteuses supportées en ajoutant le lettre C, comme par exemple : CA_1C, CA_7C.

Si l’UE supporte le CA inter-bande sur 2 porteuses, il indique les porteuses supportées en ajoutant la lettre A comme par exemple : CA_1A_5A.

Si l’UE supporte le CA intra-bande non contigüe sur 2 porteuses, il indique les porteuses supportées en ajoutant la lettre A comme par exemple CA_1A_1A.

Les combinaisons possibles sont définies dans la 3GPP TS36.101 pour 2 bandes en classe A (R.10 et R.11), trois bandes en classe A et/ou classe C (R.12), 4 et 5 bandes (R.13). La liste des possibilités d’agrégation sur deux porteuses augmentent de la R.10 à la R.13.

Cela nécessite donc de nouvelles catégories de terminaux. La table 3.4 complète ainsi la table 3.1, en ne prenant en compte que le nombre de CC. D’autres paramètres tels que le nombre d’antennes pour le MIMO et la modulation sont à prendre en compte pour expliquer les débits annoncés.

Table 3.4. Nouvelles catégories de terminaux définies par la R.10

 

3.3.2 : Agrégation de porteuses en FDD-TDD

La spécification R.12 exploite les méthodes de multiplexage en fréquentielle et en temporelle. Ainsi, la PCell peut fonctionner en FDD avec l’UE et la SCell en TDD. Cela permet d’offrir la possibilité d’exploiter la bande des 3.5 GHz en TDD avec les autres bandes de l’opérateur. La 3GPP préconise l’utilisation des bandes en TDD sur une fréquence plus élevée que les porteuses en FDD

Cours 3 – Niveau Master – Chap 2 (Part 1)

L’agrégation de porteuses sur les bandes licenciées et non licenciées

3.1. Principe d’agrégation de porteuses pour le LTE-Advanced

En théorie de l’information, le débit maximum de transmission à travers un canal de communication dépend de la bande de fréquence B utilisée et du rapport signal sur bruit (SNR : Signal Noise Ratio). Le théorème de Shannon-Hartley donne une limite maximale C pour bruit gaussien :

C=B.log2(1+SNR)

(la démonstration mathématique à partir de la théorie du signal se trouve facilement sur Internet)

La bande de fréquence B utilisée par le LTE est au plus égale à 20 MHz. L’agrégation de porteuses (Carrier Aggregation ou CA) permet d’atteindre des débits de transmission beaucoup plus rapides en augmentant la bande de fréquence.

L’agrégation de porteuse est une fonctionnalité qui est apparue avec le LTE-Advanced (LTE-A R.10), pour le mode duplex FDD ou TDD (Frequency Division Duplex, Time Division Duplex).

Avant la R.10, les terminaux de catégorie 1 à 5 étaient mono-porteuse sur une bande comprise entre 1.4 MHz et 20 MHz. Les premiers tests d’agrégation de porteuses ont été réalisés sur des terminaux de catégorie 4 et sur deux bandes de 10 MHz. Les terminaux de catégorie 6 sont disponibles depuis 2014, et permettent d’atteindre des débits de 300 Mbps (en DownLink DL) en supportant deux bandes de 20 MHz. Les terminaux de catégories 9 disponibles à la vente depuis 2015 supportent 3 bandes de 20 MHz, ce qui permet d’atteindre un débit de 450 Mbps. Les terminaux de catégories 4, 6 et 9 possèdent 2 antennes et supportent la modulation 64 QAM sur le lien descendant. Pour ces terminaux, une bande de 20 MHz correspond à un débit de 150 Mbps. En pratique, pour un opérateur qui disposerait un total de 45 MHz sur 3 bandes différentes pourrait proposer un débit maximal descendant de 337.5 Mbps avec ces catégories de terminaux.

On peut ainsi définir une première classification des catégories de terminaux en vente en 2017 en fonction du nombre de canaux de fréquences supportés :

Tableau 2.1. Catégories de terminaux définies dans la R.10 et R.11

Le LTE-Advanced étend l’agrégation de porteuses à 5 canaux, portant à 100 MHz la bande maximum. L’UE de catégorie 8 (également défini dans la R.10) supportera cette fonctionnalité.

Dans les R.10 et R.11, le nombre de porteuses pour le lien montant est inférieur ou égal au nombre de porteuses pour le lien descendant.

Dans la R.12, les UE peuvent réaliser de l’agrégation de porteuses en mode TDD et conjointement en mode FDD. La R.12 propose 80 combinaisons de deux porteuses et quelques combinaisons de trois porteuses.

La R.13 ajoute de nouvelles combinaisons de porteuses pour 2, 3, 4 et 5 porteuses et étend la combinaison avec les bandes WiFi. La R.13 a normalisé 492 combinaisons de porteuses pour l’agrégation de deux bandes, 248 combinaisons sur 3 bandes, 56 combinaisons pour 4 bandes et 2 combinaisons pour 5 bandes.

3.2. Mécanisme d’agrégation de porteuses

Le principe consiste à augmenter la bande utilisée par le mobile pour accroitre son débit, on nomme Component Carrier (CC) chaque bande agrégée. L’UE est connecté avec un seul eNb, l’eNb dispose de plusieurs bandes de fréquences contiguës ou disjointes.

Après avoir décrit les fonctionnalités de l’Agrégation de porteuses, nous allons maintenant étudier son mécanisme.

En mode de veille, l’UE écoute les informations émises par l’eNb (canal balise, paging) sur la bande de fréquence spécifique à la cellule. Si l’UE doit émettre ou recevoir des données, il doit passer en mode connecté (RRC Connected). L’UE pouvant exploiter plusieurs bandes de fréquences, on différencie la PCC (Primary Component Carrier) correspondant à la bande sur laquelle l’UE échange la signalisation NAS et les données avec l’eNb (PCell : Primary Cell) et le(s) SCC (Secondary Component Carrier) les bandes sur lesquelles l’UE échangent les données avec les autres cellules (SCell : Secondary Cell). Les paramètres de la cellule primaire et des cellules secondaires sont configurés au niveau RRC. Ainsi, la PCC est modifiée uniquement par une procédure de Handover et les SCC peuvent être dynamiquement activées et désactivées par des nouvelles requêtes RRC. Dans le cadre du CA, l’UE ne dispose que d’une seule connexion RRC avec l’eNb.

Figure 3.1. Impact de l’agrégation de porteuses sur l’interface radio

Toutes les SCC sont considérées comme des ressources de transmission additionnelles. Les couches Physique et la couche MAC sont les deux couches impactées par la CA (Figure 2.1), avec de nouvelles requêtes RRC :

  • La couche Physique réalise la transmission d’un bloc de transport (TB), la retransmission rapide des paquets erronés via le mécanisme HARQ est réalisée sur chaque CC.
  • L’allocation de ressources est réalisée sur le canal PDCCH. Dans le cas de l’agrégation de porteuses, soit le PDCCH de chaque cellule assigne les ressources pour sa cellule (self scheduling), soit un seul PDCCH assigne les ressources pour toutes les cellules (PCell et SCell). Ce scénario se nomme Cross Carrier Scheduling.

Figure 3.2. Séquencement avec et sans cross scheduling

La couche MAC multiplexe les données issues de la couche PDCP et RLC sur les différentes porteuses.

La signalisation relative à l’agrégation de porteuses est donc transparente pour le protocole de convergence des paquets de données (PDCP) et pour la couche de contrôle des liaisons radio (RLC).

L’UE doit en retour émettre un acquittement pour chaque HARQ. Dans la R.10, le lien étant asymétrique, l’UE doit pouvoir, sur le canal montant, transmettre les acquittements (ACK/NACK) de chaque HARQ ainsi que des mesures du lien radio (CQI, PMI, RI). Le PUCCH de format 3 permet de compiler les informations.

Concernant le lien montant, l’UE doit émettre ses données avec un temps d’avance (TA Timing Advanced) afin de compenser la durée du trajet de l’onde Radio et assurer ainsi une synchronisation avec la trame en réception de l’eNb. Lorsque l’UE réalise de l’agrégation de porteuse, les antennes de réception (RRH) peuvent être déportées (se référer au chapitre 1), et le temps de trajet n’est donc pas identique sur chacune des porteuses. Si la R.10 ne gère le TA que pour la Pcell, la R.11 permet d’appliquer des TA différents selon la bande de fréquence.

Gestion du spectre. De l’eICIC vers la Radio Cognitive : l’approche de la 5G

Gestion du spectre

Les ressources spectrales sont devenues rares, les opérateurs ne possèdent que quelques MHz de bande de fréquence sur la bande du 800 MHz et de 2,6 GHz. Il est donc nécessaire pour l’opérateur de gérer au mieux son spectre d’autant plus que, le droit d’utilisation des bandes 4G est très chère (cf. cout des licences).

Concernant les opérateurs WiMAX, on entend parler de l’utilisation prochaine de la bande de 3,5 GHz (WiMAX) pour du LTE (cela va devenir une réalité), et pour la 4G « on » espère un ré-aménagement des bandes à 700 MHz (libération TNT), mais la gestion du spectre est néanmoins un facteur prépondérant dans la couverture d’une cellule et pour maximiser le nombre d’utilisateurs pouvant être gérés par une station de base (capacité).

Le réseau 2G (accès Radio : GERAN) s’appuie sur le principe de partage de fréquence (Ingénierie Cellulaire) entre cellules. Deux cellules voisines exploitent un nombre limité de fréquences, complémentaires. L’opérateur doit donc partager la bande totale en lot de fréquences différentes pour éviter l’interférence.

C’est quoi l’interférence? Le phénomène d’Interférence est le brouillage d’une communication par une autre qui utilise la même fréquence. Exemple : lorsque vous écouter une radio FM dans une ville et que vous vous éloignez de l’émetteur,avant de basculer sur une autre radio qui émet à la même fréquence dans une autre ville, le signal devient inaudible (bruité).

Ordonnancement Cross Layer

Au laboratoire LIAS, nous travaillons sur les algorithmes d’ordonnancements pour gérer au mieux le spectre afin de maximiser la capacité de la cellule en respectant la QoS de chaque session. Nous associons à la technique d’ordonnancement du spectre radio (Couche Physique), la possibilité d’agréger plusieurs porteuses (Agrégation de porteuses) Un mémoire de Master est disponible pour ceux qui en feront la demande par mail.

J’organiserai prochainement une journée de travail sur l’eICIC et l’ordonnancement, je recherche des partenaires industriels pour animer cette journée. Contactez-moi si vous pouvez participer à cette journée (Présentation des laboratoires impliqués dans le projet et des thématiques communes avec les professionnels).

eICIC

eICIC : ‘Enhanced Inter-Cell Interference Coordination (eICIC)’

eICIC est une technologie qui a pour objectif de coordonner les signaux émis par les différentes stations de bases vers les mobiles, afin de diminuer au maximum les interférences.

Cette technologie va massivement se déployer dans les années à venir notamment :

  • Lors du déploiement des FemtoCells (pour la Data 4G) chez les particuliers. L’opérateur devra gérer les stations de bases (macro-cellulles et pico-cellules) et gérer les FemtoCells (qui utilisent le spectre licencié 4G)
  • Pour faire face à l’explosion de la Data (10 Exabytes de Data par mois prévus en 2016)

L’eICIC estune technique destinée à améliorer la robustesse des communications dans les cellules en minimisant les interférences. Ce contrôle des eNB et HeNB peut aussi être utilisé avec efficacité pour ajuster la couverture des stations de base, pour délester le trafic sur d’autres eNB. Cette solution est donc une activité du SON (Self Optimizing Network). C’est notamment l’approche choisi par le LIAS pour l’ordonnancement en collaboration avec XLIM-SIC pour la connaissance du canal.

Nokia Siemens Nortel a expérimenté un prototype pour préparer le réseau de télécommunication de prochaine génération (NG Telecommunication Network). Cette technologie vient en complément du CoMP (Coordinated Multi-Point) et de l’Agrégation de Porteuse.

Le CoMP est une technologie qui réduit voir annule l’interférence entre station de base et améliore les communications en bord de cellule en augmentant la puissance du signal.

L’eICIC sera commercialisé en 2013 (deuxième semestre) pour contrôler les interférences et permettre de l’équilibrage de charge.

Vers la Radio Cognitive

La radio cognitive est un système qui permet à un terminal de pouvoir interagir avec son environnement. Cela signifie que celui-ci sera capable de percevoir son environnement, de le modéliser et de s’y adapter. Il pourra donc détecter les fréquences libres et les utiliser, contribuant ainsi à une meilleure efficacité spectrale.

Dans le cadre de la radio-cognitive, le terminal embarque aussi de l’intelligence, alors que pour la 4G ce sont encore au niveau de la eNb que se fait le contrôle des fréquences et de la puissance. La radio-cognitive sera utilisée pour le système 5G.