RSRP et RSRQ

En allant sur les forums 4G, je m’aperçois que plusieurs topics traitent du problème suivant : Pourquoi le RSRQ=-3dB au maximum?

Hypothèse : Si l’on suppose que seul le signal de référence est transmis dans les ressources blocks, et que l’on ne prend pas en compte ni les données (que les RS), ni le bruit, ni les interférences alors dans ce cas RSRQ=-3dB.

Les raisons évoquées dans les forums me paraissaient flous, comme par exemple les liens suivants

Je vous propose donc dans cet article de revenir sur ces notions RSRP, RSRQ et RSSI pour expliquer :

Pourquoi RSRQ=-3dB si l’on suppose que seul le signal de référence est transmis.

(Ce cours est un extrait des formations proposées sur la 4G, cf http://www.mooc-ipad-formation.eu/ ou http://blogs.univ-poitiers.fr/f-launay/modules-de-formation/ ou contactez moi)

Mais avant cela, revenons sur les définitions et les fonctions du RSRP, RSRQ et RSSI. Nous en profiterons aussi pour revenir sur des notions similaires en 3G en lisant les articles suivants :

Avant d’aborder le problème, revenons une fois de plus sur les définitions :

3GPP TS 36.214  V9.2.0

Le RSRP est lié à la puissance mesurée sur un RE dans lequel le RS est transmis, il est donc nécessaire de revenir sur le mapping physique d’une trame LTE

Un RB est composé de 84 RE (7 symboles, 12 sous-porteuses), il y a 4 RS et dans l’exemple traité (pas de données), 80 RE qui ne transportent aucune information.

Mais, Le RSRP mesure la puissance transportée par le signal de référence dans un RE, le RSSI quant à lui mesure sur la bande totale, sur N RB.

D’après le mapping, seuls les symboles 0 et 4 de chaque slot transmettent des RS et sur chaque symbole, il y a 2 sous porteuses qui transportent de l’information.

Ainsi, le calcul étant mené sur un symbole transportant de l’information, la puissance transportée par RB est égale à 2 fois la puissance RSRP = 2*RSRP (on ne fait la mesure que sur les symboles 0 ou symboles 4).

Si le signal est sur N RB, dans ce cas, RSSI=N*2*RSRP

Le RSRQ est égale à N*RSRP/RSSI vaut donc ½ soit -3dB

 

Hypothèse 2 : Si maintenant on suppose que des Données sont transmises sur chaque sous porteuses, dans un RB ou un RS est transmis, il y a 10 RE pour la donnée et 2 RE portant le RS. Chaque RE portant la même puissance (égale à RSRP), la puissance transportée par RB est donc égale à 12 RSRP.

Donc si l’on suppose que les données sont transmises avec la même puissance, le RSRQ vaut 1/12 soit RSRQ=-10,79 dB

 

RSRP et RSRQ 2ème : Définition

Pour faire suite aux mesures présentés dans l’article précédent, nous allons maintenant détailler les notions.

J’invite le lecteur à revenir éventuellement sur un précédent article présentant une partie de la couche physique : http://blogs.univ-poitiers.fr/f-launay/2011/09/25/15mhz20mhzdebandes-quellessontlesconsequences/

I) Reference signal Receive Power (RSRP):

RSRP est la mesure la plus basique réalisée par la couche physique du l’UE, permettant d’obtenir une valeur moyenne de la puissance reçue du signal de référence (RS) émise par la station de base par RE (Resource Element). La mesure s’exprime en Watt ou en dBm. La valeur est comprise entre -140 dBm à -44 dBm par pas de 1dB.

Puisque le signal de référence RS n’est émis qu’à un instant donné sur une seule bande de fréquence, la mesure n’est réalisée que dans cette bande de fréquence (correspondant à un RE : Ressource Element). Sur la figure ci-dessous, on présente la position des signaux de référence dans un RB (transmis sur les symboles 1 et 5 sur cette figure ou sur les symboles 0 et 4 selon la numérotation du premier symbole)

De par la sélectivité en fréquence du canal de propagation, la valeur du RSRP n’est pas identique d’un RE à l’autre, cependant afin d’optimiser la bande de fréquence pour les communications, il n’est pas prévu de réaliser des mesures de RS sur toutes les ressources symboles mêmes si des mesures précises doivent être réalisées pour estimer au mieux la qualité du lien radio. On note ici la différence principale entre le RSRP et le RSSI (Reference Signal Strength Indicator) lequel est une mesure de puissance sur toute la bande de fréquence, et pas seulement sur un RE comme c’est le cas pour le RSRP.

A partir des mesures effectuées par l’UE, il est possible de récupérer le RSRP de la cellule principale et des cellules voisines, mesures effectuées sur la même fréquence ou deux fréquences différentes (même RE sur une ou plusieurs antennes dans la cadre du MIMO).

On distingue deux types d’exigences sur la précision de la mesure, la précision absolue du RSRP et la précision relative RSRP.

  • La précision absolue du RSRP consiste à comparer le RSRP mesurée dans une cellule par rapport au RSRP mesuré par la cellule principale (serving cell).
  • La précision relative du RSRP consiste à comparer le RSRP mesurée dans une cellule par rapport au RSRP mesuré dans une autre cellule autrement dit entre deux cellules qui ne sont pas définie comme la cellule de référence (serving cell). Il est ensuite possible de différencier la précision relative et absolue intra-fréquentielle et inter-fréquentielle. Intra-fréquentielle signifie que les mesures sont réalisées sur la même fréquence, et inter-fréquentielle pour traduire l’idée que la mesure entre les 2 RSRP est effectuée sur 2 bandes de fréquences différentes.

La connaissance du RSRP absolu permet à l’UE de connaitre la fiabilité de la cellule à partir de laquelle on estime l’atténuation apporté par le canal, ce qui conditionne la puissance optimale de fonctionnement du mobile pour interagir avec la station de base.

Le RSRP est utilisé à la fois en mode de veille qu’en cours de communication. Le RSRP relatif est utilisé comme un paramètre de choix dans le cas de scénarios multi-cellules.

Le RSRP est donc utilisé soit à des fins de Handovers dans le cas d’une communication, soit à la définition de la cellule de référence. Cependant, dans le cas du Handover, il est préférable de s’appuyer sur le RSRQ qui est un indicateur de qualité de la communication.

Le RSRP est un indicateur de l’atténuation subit dans le canal, bien que différent de la puissance totale reçue (puissance du signal transmis et du bruit), cet indicateur peut être comparé à l’indicateur CPICH RSCP (Received Signal Code Power)  effectuée dans le cadre du WCDMA (3G) pour sélectionner le choix de transmission (3G ou 4G). Le RSCP est la mesure de puissance d’un canal pilote WCDMA (CPICH : Common Pilot Indicator Channel) sur une bande de 5 MHZ. Cela prend en compte le signal reçu dans sa globalité, c’est-à-dire avec le bruit et les interférences.  La comparaison entre le RSRP et le RSCP permet de choisir la techno en cas de changement de RAT ainsi que pour le Handover.

Différence entre le RSRP et le RSCP?

Afin de bien différencier les sigles, je vous propose de re-définir chacun d’entre eux :

RSCP : Received Signal Code Power (UMTS) représente le niveau de la puissance reçue de la fréquence pilote d’une station de base (Nœud B ou nB). Dans le cadre de la 3G, le multiplexage est réalisé par code, plusieurs nB peuvent transmettre sur la même fréquence, avec des codes spécifiques. Le RSCP permet de calculer le niveau de puissance d’une station de base, c’est-à-dire après démultiplexage du code.

RSRP : Reference Signal Receive Power (LTE) représente la puissance reçue sur un RB en provenance d’une cellule (les séquences de CRS sont différentes d’une cellule à l’autre grâce aux propriétés d’intercorrélation et d’autocorrélation des séquences de Zadoff-Chu),

Pour simplifier, le RSRP est la mesure équivalente au RSCP pour la 3G, c’est deux notions sont donc identiques dans la fonction, mais s’applique à deux technos différentes.

RSSI : Puissance du signal sur la bande de 5 MHz, il s’agit donc de la puissance mesurée en provenance de toutes les stations de base.

II) Reference Signal Receive Quality (RSRQ):

Bien que le RSRP soit une mesure importante, il ne donne aucune information sur la quatité de la transmission. Le LTE s’appuie alors sur l’indicateur RSRQ, défini comme le rapport entre le RSRP et le RSSI (Received Signal Strength Indicator). Le RSSI représente la puissance totale du signal reçu, cela englobe le signal transmis, le bruit et les interférences.

RSRQ=10*log(N*RSRP/RSSI)

N étant le nombre de ressource block.

Mesurer le RSRQ est intéressant particulièrement aux limites des cellules, positions pour lequelles des décisions doivent être prises pour accomplir des Handovers et changer de cellule de références. Le RSRQ mesuré varie entre -19,5dB à -3dB par pas de 0.5dB.

Le RSRQ n’est utile uniquement lors des communications, c’est-à-dire lors de l’état connecté. La précision absolue (Intra- et inter-frequentiel) varie de ±2.5 à  ±4 dB.

Le RSRQ pour la 4G peut être comparé à l’indicateur CPICH Ec/No réalisé en 3G

EcNo (3G) : Ec est l’énergie reçue par chip (terme réservé à la 3G) du canal pilote divisé par le bruit total. Cela revient à estimer une image du rapport Signal Sur Bruit, lequel conditionne (Cf. Shannon) la capacité du canal, autrement dit le débit maximum de transmission sans erreur. EcNo est donc égal au RSCP (3G) divisé par le RSSI (bruit total). La meilleure valeur de EcNo correspond à la marge de puissance entre le signal reçue et le bruit sur le signal pilote (et uniquement sur le signal pilote). C’est pour cette raison que la valeur est indicative du rapport signal à bruit pour la transmission de données mais n’est pas la valeur du rapport Signal à Bruit (SNR) de la transmission des informations.

L’indicateur RSRQ fournit des informations supplémentaires quand le RSRP n’est pas suffisant pour faire le choix d’un handover ou d’une re-sélection de cellules.

RSRP et RSRQ 1ère partie : Mesure de la qualité du signal radio et de la puissance reçue réalisée au niveau de la couche Physique.

Le mobile (User Equipment ou UE) et la station de base (eNB) effectuent périodiquement des mesures radios pour connaître la qualité du lien radio (canal de propagation). Toutes les caractéristiques sont indiquées dans le document 3GPP TS 36.214, et nous tentons ici d’extraire des informations sur l’utilité des mesures et les conditions de mesures.

La station de base émet des signaux de références (RS – Reference Signal) permettant d’estimer la qualité du lien du canal radio. Un signal de référence (RS) est un signal émis par l’émetteur et connu par le récepteur, ce signal ne transmet aucune information. Cependant, le récepteur compare la séquence reçue à la séquence émise (donc en clair la séquence que le récepteur aurait dû recevoir dans l’idéal) et à partir de la différence entre les deux, le récepteur estime la déformation apportée par le canal de transmission (multi-trajets, effets de masque, atténuation, interférences, …).

Cette séquence connue est émise sur toute la cellule, il s’agit d’un signal broadcasté spécifique par cellule.  Par conséquent il doit être émis avec une puissance suffisante pour couvrir la cellule et avoir des propriétés particulières (puissance constante par exemple, autocorrélation nulle, faible intercorrélation) pour différencier le signal reçu d’une cellule à une autre. Dans le cadre du LTE, les séquences utilisées sont des séquences de Zadoff-Chu transmise sur une modulation QPSK. Le motif est identique à chaque sous trame, à un décalage en fréquence près entre les cellules de manière à limiter l’interférence et améliorer ainsi la réception du RS. La puissance du CRS peut aussi être augmenté en cas de fort trafic (et donc d’interférence) par rapport à la puissance des données via le Power Boosting pour la voie descendante.

L’UE quant à lui envoie un signal de référence de sonde, nommé SRS permettant à l’eNB de déterminer la qualité du canal montant et de maintenir la synchronisation

Les mesures effectuées (signaux de références aussi appelés pilotes– CRS – Cell Reference signal indiquant que le signal de référence est spécifique à la cellule) sont relayées aux couches supérieures afin de planifier des Handovers (Intra-inter cellules et inter RAT c’est-à-dire d’autres technologies comme la 3G, le Wi-FI, …).

L’UE se sert des mesures des signaux de références afin d’estimer (indicateur) le niveau du signal reçu (RSRP) permettant ainsi, en mode de veille, de sélectionner la meilleure cellule. La mesure impacte donc la gestion de la mobilité de l’UE (RRM : Radio Ressource Management)

Pour être plus pragmatique, je vous propose de d’expliciter l’image suivante en définissant les informations lues sur le mobile suivant :