Bearer EPS

Lors des articles précédent, nous avions décrit le rôle de l’ESM et la mise en place d’une session EPS. Nous allons maintenant expliquer la mise en place de bearer pour le trafic utilisateur.

I) Généralité sur le Bearer EPS

Le bearer EPS est un tuyau (tunnel) construit entre l’UE et le P-GW selon les caractéristiques contenues dans l’EPS session. Le premier bearer EPS construit, nommé default bearer EPS est mis en place lors de la procédure d’enregistrement.

Un bearer EPS est un tuyau caractérisé par des paramètres de QoS car les applications n’ont pas les mêmes besoins : Certaines applications comme le streaming, la visio et la phonie nécessitent un débit garanti (GBR) alors que  le browsing et le téléchargement se suffisent de Best Effort (Débit Non Garanti). On peut envisager à terme l’attribution de critères pour différencier les users premium, gold ou silver.

Pour différencier les bearer, les flux sont identifiés par deux critères :

  • QCI : QoS Class Identifier que l’on traduit par Identifiant de Qualité de Service
  • ARP : Allocation and Retention Priority est la priorité d’allocation et de rétention.

Ces critères sont spécifiés lors de la mise en place du PDN connection (EPS session). Pour plus de renseignement, se référer à l’article ESM – EPS Session Manager

Figure 1. Overview of Session Bearer IDs

Le Bearer EPS traverse plusieurs interfaces, sur chacune de ces interfaces un bearer de niveau inférieur est établi entre les équipements de proche en proche : Data RAdio Bearer, S1 Bearer et un S5 Bearer.

II) Différents Bearer physique

Chaque bearer est identifié par l’identifiant de tunnel TEID (Tunnel Endpoint ID) sur chacune des interfaces. Evidemment, les paramètres CQI/ARP sont identiques sur chaque bearer mis en place pour une EPS session donnée. N’oubliez pas que l’EPS session se charge de gérer les flux sur chaque équipement, autrement dit gère les Bearer entre l’UE-eNb-SGW-PGW.

L’utilisateur pouvant lancer plusieurs applications simultanément, plusieurs EPS bearer peuvent être établis pour un même utilisateur. Chaque EPS bearer est identifié par l’EPS bearer ID, lequel est alloué par le MME.

  • [UE] – [eNB]: Data Radio Bearer (DRB)

EPS bearer est établi sur l’interface LTE-Uu. Le trafic utilisateur (IP packet) est délivré dans le DRB. Differents DRBs sont identifiés par le DRB ID alloués par le eNb

  • [eNB] – [S-GW]: S1 bearer

EPS bearer établi sur l »interface sur l’interface S1-U interface. Le trafic utilisateur est délivré via un tunnel GTP (GTP-U)  Différents S1 bearers sont identifiés par le TEID, qui est alloué par les équipements périphérique (eNB et S-GW).

  • [S-GW] – [P-GW]: S5 bearer

EPS bearer est établi sur l’interface S5.. Le trafic utilisateur est délivré via un tunnel GTP (GTP-U)  Différents S5 bearers sont identifiés par le TEID, qui est alloué par les équipements périphérique (S-GW et P-GW)

  • [UE] – [S-GW]: E-RAB bearer

E-RAB est un bearer logique entre l’UEet le S-GW. Il est constitué du DRB et du S1 bearer

III) Deux types d’EPS Bearer

Nous avons défini au cours du premier paragraphe un EPS bearer, il existe deux types d’EPS Bearer :

  1. EPS Bearer par défaut : Default bearer
  2. EPS Bearer dédié : Dedicated bearer

Figure 2. EPS Bearer Types

Je rappelle que le bearer par défaut est établi pour chaque UE lors de la procédure d’attachement (enregistrement) au réseau. Nous verrons plus en détail le call flow dans un prochain article.

Le bearer par défaut (Default Bearer) est établi avec les paramètres QCI et ARP fournis par le MME. Ces valeurs sont définies par l’abonnement de l’utilisateur dont les données de souscriptions sont sauvegardées dans le HSS. Le bearer par défaut fourni une connectivité IP, le débit n’est pas garanti.

Les dedicated bearers sont des bearer établis à n’importe quel moment après la procédure d’enregistrement pour que l’utilisateur puisse profiter de services nécessitant de la QoS spécifique (latence, débit, …) et sur d’autres PDN. Les valeurs de QoS sont reçues au niveau du P-GW par le PCRF et transférées ensuite au S-GW. Enfin, le MME transfère les valeurs reçues par le S-GW vers le eNb (interface S11)

Gestion de l’itinérance (Part 2) : la mobilité des UE

Part 2 : Gestion de la mobilité

II-1) – La signalisation


Le réseau GSM et 3G s’appuie sur l’architecture traditionnelle de la téléphonie commuté et exploite le protocole de signalisation SS7 (cf. http://mooc-ipad-formation.eu).
Ainsi, la gestion de la mobilité, la gestion de la localisation et de l’authentification étaient pris en charge par le protocole MAP (Mobile Application Part).

Ce protocole décrit les messages transmis entre les différents équipements du réseau de l’opérateur Home (HPLMN) et l’opérateur visité (VPLMN). Lors d’une première phase de migration vers l’IP, la signalisation SS7 initialement transportée sur des liens traditionnels TDM comme le E1/T1 est dorénavant encapsulée sur l’IP via le protocole SIGTRAN.

Mais, le réseau LTE n’utilise pas le protocole de signalisation SS7 : Diameter a été préféré et remplace le protocole MAP en supportant toutes ses fonctionnalités.

Le protocole DIAMETER a été adapté pour le LTE afin de gérer la gestion de mobilité des UE au sein du LTE mais le protocole doit également assurer l’interconnexion entre le LTE et les réseaux 2G/3G (DIAMETER to MAP). Pour échanger des données de signalisation, DIAMETER utilise des AVPs (Attribute Variable Pair) afin d’encapsuler les données en provenance d’applications reconnues.

Sur le tableau suivant, en guise d’exemple, nous donnons la traduction des messages MAP/DIAMETER.

diameter_map

II-2) L’architecture du réseau LTE

Pour comprendre la gestion de la mobilité sur le réseau LTE, il est nécessaire de revenir sur l’architecture du réseau en insistant (en rouge) sur la partie roaming (cf. article précédent).

LTE_roamingLes interfaces en rouges sont exploitées lors du roaming, nous allons les détailler pour plus de clarté :

  • Gestion de la mobilité :

L’interface S6a permet de transférer des données d’authentification et de localisation entre le MME et le HSS via Diameter afin d’autoriser ou non l’accès d’un utilisateur au réseau LTE.
En général, l’authentification est réalisée en respectant le protocole AAA lequel réalise trois fonctions : l’authentification, l’autorisation, et la traçabilité (en anglais : Authentication, Authorization, Accounting/Auditing)
L’interface S6d autorise les échanges d’informations relatives au protocole AAA entre le SGSN et HSS sur (over) DIAMETER.

  • Policy Control and Charging

L’interface S9 transfère la politique de contrôle de la QoS et les informations de taxation entre le HPCRF (Home Policy and Charging Rules Functionality) et le PCRF (Policy and Charging Rules Function) du V-PLMN toujours sur Diameter (cf. architecture SAE/LTE)
Le PCRF supervise les flux sur le réseau LTE : Il peut détecter les types de flux et de services (DPI : Deep packet Inspector) et met en relation la taxation adaptée (abonnement, calendrier) sur ce type de flux.

  • GTP Traffic

Le flux de données est transporté via un tunnel entre le SGW et le PGW sur l’interface S8. On retrouve le même fonctionnement en 2G et 3G, entre le SGSN et le GGSN.

II-3) Mise à jour de la localisation

Lorsqu’un utilisateur authentifié est en déplacement, le premier message reçu par le cœur de réseau est un message de Mise à Jour de la localisation (Location Update), quel que soit le protocole MAP ou DIAMETER utilisé.

Cependant, dans le cas

  • GSM MAP; le message ISD (Insert Subscriber Data) transporte le profil complet de l’abonné et si l’information complète ne peut être transmise dans un seul message ISD, le V_PLMN demande la transmission des informations complémentaires via d’autres messages ISD.

En 2G/3G, le protocole INAP/CAMEL est utilisé chaque fois qu’un utilisateur est en itinérance sur un autre réseau. LTE ne supporte pas le protocole CAMEL, il n’existe pas de traduction de message INAP vers le protocole DIAMETER

  • Pour DIAMETER, le LUA (Location Update Answer) transporte le profil de l’abonné. Ainsi, le DIAMETER ISD n’est utilisé que lorsque le H-PLMN demande un changement dans le profil de l’abonné.

Sur les figures ci-dessous, nous illustrons la partie Location Update via le protocole MAP (figure de gauche) et via le protocole Diameter (figure de droite)

Loc_Update_MAP_Diameter

II-4) Contrôle de la politique de QoS et facturation en temps réel

Dans le précédent article, nous avions vu deux techniques de routage de trafic, soit via le P-GW du réseau visité (Local Breakout) soit via le P-GW du réseau home (Home Routing).

Dans le premier cas, il est nécessaire de définir un accord pour échanger les informations de contrôle d’appel via l’interface Gy entre les deux PLMN. Ainsi, le PDN du V-PLMN peut interagir directement avec le système de tarification (charging system) du H-PLMN.

II-4.1) Home Routing

Basons-nous sur l’architecture du LTE, en focalisant notre attention sur les équipements impliqués lors du roaming. Sur la figure suivante, le V-PCRF communique avec le H-PCRF via l’interface S9 mais la facturation en temps réel (Real Time Charging) n’est pas transmise sur l’interface S9, mais via l’interface Gy selon le protocole DIAMETER RFC 3588.

Chaging_system_HPLMN

Concernant le roaming 2G/3G vers la 4G (on parle de roaming INTER-RAT), il faut savoir que le PCEF n’est pas pris en charge sur le réseau 2G/3G, ce qui pose un souci de QoS lors d’un roaming inter-RAT. En effet, dans le cas du réseau 2G ou 3G, le GGSN était dédié aux données et la QoS était spécifiée par la création d’un PDP context, la téléphonie était géré par le MSC, les SMS par le SMSC, et les services avancés par CAMEL.

II-4.2) Local Breakout

La procédure est légèrement différente, puisque c’est le PCEF du réseau visité qui transmet les informations de facturation en temps réel au H-PLMN. Les mêmes interfaces que précédemment sont utilisées.

Chaging_system_PLMNs