5G-Advanced R.19 : AIoT – Partie 1

La Release 19 (5G advanced) introduit un nouveau dispositif IoT nommé IoT Ambiant (Ambient IoT). À la différence des autres dispositifs IoT comme le LTE-M, NB-IoT ou le RedCap, il s’agit de dispositifs IoT qui fonctionnent sans batterie conventionnelle ou avec un stockage d’énergie très limité (comme un condensateur), et qui tirent leur énergie de l’environnement via diverses techniques de récupération d’énergie.

Pourquoi l’IoT Ambiant est-il important ?

L’IoT Ambiant répond à plusieurs défis critiques des réseaux IoT actuels :

  1. Réduction de l’impact environnemental : en éliminant les batteries traditionnelles, on réduit les déchets électroniques et la nécessité de remplacer et recycler les batteries.
  2. Diminution des coûts de maintenance : les dispositifs sans batterie ou avec des capacités de stockage très limitées peuvent fonctionner pendant de longues périodes (plus de 10 ans) sans nécessiter d’intervention humaine.
  3. Miniaturisation : sans batterie conventionnelle, les dispositifs peuvent être beaucoup plus petits, légers et moins complexes.
  4. Déploiement dans des environnements difficiles : ces dispositifs peuvent être déployés dans des endroits où le remplacement de batterie serait impossible ou très coûteux.

Comment fonctionne la récupération d’énergie dans l’IoT Ambiant ?

Les dispositifs IoT Ambiant utilisent différentes sources d’énergie ambiante :

1. Énergie RF (Radio-Fréquence)

  • Les dispositifs récupèrent l’énergie des ondes radio présentes dans l’environnement (3 kHz à 300 GHz)
  • L’énergie récupérée est généralement de l’ordre de quelques microwatts à des dizaines de microwatts
  • Un circuit redresseur convertit les signaux RF en courant continu utilisable
  • L’efficacité de conversion varie de 1,2% à 49% selon les technologies

2. Énergie solaire/lumière

  • Utilisation de cellules photovoltaïques pour convertir la lumière en électricité
  • En extérieur, l’énergie solaire peut fournir jusqu’à 100 mW/cm²
  • En intérieur, l’éclairage peut fournir environ 100 μW/cm²
  • L’efficacité de conversion est typiquement de 10-40%

3. Énergie thermique

  • Exploitation des différences de température via l’effet Seebeck
  • L’efficacité est relativement faible (environ 5-6%)
  • La densité de puissance varie de 25 à 1000 μW/cm² selon les conditions environnementales.

4. Vibration mécanique

  • Utilisation de l’effet piézoélectrique pour générer de l’électricité à partir des déformations mécaniques
  • Typiquement, ces générateurs peuvent produire environ 250 μW/cm³
  • Sources : vibrations, mouvements humains, vent, ondes acoustiques

Architecture et communication

L’IoT Ambiant s’intègre dans les réseaux 5G de différentes façons :

Modes de communication

  1. Communication directe avec le réseau : Le dispositif IoT Ambiant communique directement avec le réseau 5G.
  2. Communication indirecte via un UE : Le dispositif communique d’abord avec un équipement utilisateur (UE) qui relaie ensuite l’information au réseau 5G.
  3. Communication device-to-device : communication directe entre un dispositif IoT Ambiant et un UE sans passer par le réseau.

Scénarios de disponibilité

  1. Fonctionnement normal : Le dispositif a de l’énergie disponible en continu ou pendant des périodes significatives.
  2. Fonctionnement déclenché par le dispositif : Le dispositif n’a de l’énergie que par intermittence et décide lui-même quand communiquer.
  3. Fonctionnement à la demande : Le réseau 5G réveille et déclenche le dispositif pour qu’il communique, le dispositif ne pouvant pas déterminer lui-même quand communiquer.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *