Network Functions Virtualisation (NFV) pour le réseau 4G/5G

Objectifs :

Comprendre :

  • l’infrastucture du NFV (NFVI);
  • la gestion et l’orchestration des VM (MANO)
  • la fonction de chainâge de service VNFFG (Virtual Network Function Forwarding Graph). Le VNFFG correspond à la fonction SFC pour le NFV (reprendre l’article précédent pour le SFC)

Introduction

L’approche NFV permet à l’opérateur de déployer des fonctions réseaux en tant qu’instances virtualisées au lieu d’entités matérielles dédiées. L’approche NFV s’appuyant sur la virtualisation informatique permet la création de partition réseau isolée sur une infrastructure réseau partagée permettant ainsi à de multiples réseaux virtuels hétérogènes de co-exister simultanément sur les mêmes équipements matériels.

L’architecture NFV définie par l’ETSI est représentée sur la figure 1. La couche horizontale VNF correspond aux fonctions réseaux virtualisée (VNF : Virtualised Network Function). Il s’agit de machines virtuelles (VM) fonctionnant sur l’infrastructure NFV (NFVI). L’infrastructure NFVI est une infrastructure physique de stockage, de calcul et de réseau. La gestion et l’orchestration des VM est sous la responsabilité de la fonction MANO (Management and orchestration). La fonction MANO doit gérer les ressources de l’infrastructure NFVI (capacité réseau, la puissance de calcul, l’espace mémoire) et la durée de vie des fonctions virtuelles en fonctionnement sur l’infrastructure NFVI (création et allocation des VMs).

Les nœuds de l’infrastructure NFV (NFVI nodes) sont déployés sur les points de présence POP de l’opérateur afin de répondre aux exigences de latence selon les cas d’usages client. Les fonctions réseaux virtualisés (VNF) peuvent ainsi être déployées dynamiquement sur les infrastructures NFVI à la demande d’un orchestrateur et sous réserve de la limite de capacités des nœuds NFI (POP).

Figure 1 : Architecture NFV

La virtualisation élimine la dépendance entre les fonctions réseaux (NF : Network Function) et le matériel. Dans le cas du réseau de mobiles, les entités pouvant être virtualisées sont :

  • dans le cœur réseau EPC : l’entité MME, le SGW, le PGW
  • dans le cœur réseau IMS : P/I/S-CSCF

Une fois que les entités sont virtualisées (on parle alors de VNF), il est nécessaire de chaîner le trafic à travers les VNF dans un graphe ordonné pour appliquer les services réseaux. Dans le cas du NFV, le chaînage s’appelle le graphe d’acheminement des fonctions réseaux virtualisées (VNFFG – VNF  Forwarding Graph) et non le chaînage de fonctions service SFC (Service Function Chain) pour prendre en compte la virtualisation sur un réseau Overlay.

Le graphe d’acheminement des fonctions réseaux virtualisées VNF-FG fourni un niveau d’abstraction afin que l’opérateur puisse en temps réel composer les services réseaux.

Figure 2 : Exemple de graphe d’acheminement des fonctions réseaux virtualisées

Figure extrait de l’article Network Functions Virtualisation  -Update White Paper (https://portal.etsi.org/nfv/nfv_white_paper2.pdf)

II) L’architecture NFV définie par l’ETSI

L’architecture NFV est constituée de :

  • l’insfrastructure NFV : NFVI (Network Function Virtualisation Infrastructure) fournit les ressources matérielles (serveurs, COTS – Commercial Off The Sheld, cartes électroniques, …) et le logiciel de virtualisation. Le NFVI se compose donc :
    • d’une interface matérielle (stockage, réseau, calcul)
    • d’une interface virtuelle (stockage, réseau, calcul)
    • d’une couche de virtualisation entre le matériel et le logiciel
  • Le VNF (Virtualised Network Function) correspond aux fonctions réseaux virtualisées pouvant être exécutées sur les équipements du NFVI
  • NFV M&O (Management and Orchestration) permettant de gérer les services réseaux de bout en bout est composé de trois blocs
    • L’orchestrateur (NFV Orchestrator) : L’entité d’orchestration est responsable du cycle de vie des services réseau tant au niveau logiciel que matériel sur plusieurs domaines en contrôlant les VIM de chaque domaine;
    • un  gestionnaire (VNFM) en charge du cycle de vie des VNFs ;
    • un gestionnaire (VIM) en charge de la gestion des ressources du NFVI à l’intérieur d’un domaine.

Les services OSS/BSS doivent pouvoir transmettre au bloc NFV M&O des informations sur le profil des utilisateurs, la facturation, les politiques de qualités, les accords entre domaine, …

Couplé à un portail de supervision, cette architecture permet aussi de déployer des services réseaux à la demande pour les entreprises (exemple Network as a service  de la solution  Easy Go Network).

L’infrastructure NFV (NFVI) est donc répartie sur des points de présence de l’opérateur (POP) afin de réduire la latence du réseau pour ses clients : les services réseaux sont déployés sur les nœuds d’infrastructure (NFVI Node) au plus proche des clients.

Les fonctions réseaux virtualisées (VNF) peuvent ainsi être déployées dynamiquement à la demande dans la limite des capacités des nœuds NFVI.

II-1) L’infrastructure NFV (NFVI)

L’infrastructure NFV se découpe en trois domaines :

  • domaine de calcul virtualisé (processeurs, accélérateurs, …) ;
  • domaine de l’hyperviseur : système d’exploitation supportant la virtualisation (machines virtuelles) et/ou des containeurs pour faire fonctionner les VNF, ainsi que les capacités de commutateurs virtuels (vSwitch).
  • domaine réseau de l’infrastructure

En général, l’infrastructure NFV s’appuie sur la paravirtualisation et non la virtualisation : les systèmes d’exploitation des machines virtualisés n’évoluent pas dans un environnement physique virtuel mais dialogue avec l’hyperviseur via des API. La para-virtualisation réduit la consommation de ressources processeur de la virtualisation afin d’améliorer les performances en modifiant le noyau du système d’exploitation invité. Une couche de virtualisation est insérée entre le matériel et le système d’exploitation.

Le coeur de la paravirtualisation est un hyperviseur fonctionnant au plus près du matériel, et fournissant une interface qui permet à plusieurs systèmes hôtes d’accéder de manière concurrente aux ressources. Les systèmes d’exploitation hôte et invités sont modifiés pour fonctionner sur la couche de virtualisation

Figure 3 : L’infrastructure et la para-virtualisation

Les fonctions réseaux virtualisées seront déployées dans des conteneurs au-dessus de la couche de virtualisation. Un conteneur est une instance complète de système d’exploitation, avec son système de fichiers, ses comptes utilisateurs, ses processus, etc. Ainsi, les conteneurs logiciels sont considérés comme des applications pour le serveur. Sur cette application (système d’exploitation), il est possible de faire tourner des fonctions réseaux virtuels, nommés VNF

Enfin, les VNF sont interconnectées entre elles pour constituer un service réseau (NS).

Figure 4 : Le chainage de service réseaux virtuels

II-2) La gestion et l’orchestration NVF (NFV MANO – Management and Orchestration)

La couche de virtualisation permet de découpler l’implémentation logicielle des fonctions réseaux aux ressources matérielles (calcul, accélérateur et ressources réseaux). Ce découplage nécessite de nouvelles fonctions de gestion et d’orchestration et créé de nouvelles dépendances entre les ressources matérielles et les solutions logicielles virtualisées.

Une des premières motivations du NFV est l’agilité à déployer des nouvelles fonctions réseaux et d’accroitre les capacités de ces fonctions à la demande (exemple : une entreprise qui souhaite une bande passante plus importante une heure particulière dans la semaine, cf : https://www.youtube.com/watch?v=niHSqvKz4U0).

Afin de pouvoir profiter de cette agilité, un niveau d’automatisation de haut niveau est nécessaire pour provisionner, configurer et tester les performances des fonctions réseaux virtualisées.

La gestion et l’orchestration NFV (MANO) automatise le déploiement de fonctions réseaux virtualisées (VNF). Pour cela, il faut superviser :

  • L’infrastructure pour la gestion du matériel (capacité, réseau, calcul, …)
  • Le déploiement de fonctions réseaux (VNF)
  • Le chaînage de fonctions réseaux pour réaliser des services réseaux

Ainsi, l’entité MANO est constituée de trois fonctions :

  • Gestion des ressources
  • Gestions des VNF
  • Gestion des NS

Figure 5 : L’orchestration et la gestion des services et des ressources

L’objectif est de pouvoir mettre en œuvre des fonctions pour fournir des fonctions réseaux virtualisés et des services réseaux avec les ressources nécessaires pour s’exécuter correctement : les types d’instances à déployer, adapter la taille de l’instance en fonction de la demande (scaling) , mettre à jour une fonction réseau virtualisée (VNF), ou éteindre l’instance.

Au niveau réseau, les opérations de déploiement de service réseaux s’appuient des descripteurs décrivant les ressources et les opérations nécessaires. Les différents types de descripteurs sont :

  • Descripteurs VNF (VNFD) sont des gabarits permettant de définir les instances à mettre en œuvre et les besoins en ressource de chaque instance (CPU, mémoire, interface et réseau). Le descripteur défini également les types d’interfaces avec l’infrastructure NFVI et les KPI attendues.
  • Descripteur NS (NSD) : Le descripteur NSD contient les attributs pour un groupe de fonctions réseaux qui constituent ensemble un service réseau. Ces attribues contiennent aussi les exigences pour chaîner les VNF ensemble et fournir le service réseau.
  • Descripteur VNFFG (VNFFGD) contient des metadata concernant le graphe d’acheminement des fonctions réseaux virtualisées VNF, ainsi que les références aux conteneurs de l’infrastructure, aux instances VNFs et au lien entre les VNFs. Les métadonnées contiennent de plus des règles de politiques pour les fonctions d’acheminement (règle de routage et de commutation).

De plus, il est nécessaire :

  • d’automatiser les fonctions de supervisions en collectant les métriques de performances sur des instances et du matériel à des niveaux différents
  • de corréler les mesures effectuées afin d’apporter une solution sur les fautes détectées pour que le service fonctionne de manière fiable sur des équipements distribués.
  • de définir des performances KPI (Key Performance Indicator) au niveau des services réseaux (NS)

Comme évoqué précédemement, le bloc NFV M&O (Management and Orchestration) permet de gérer les services réseaux de bout en bout est composé de trois blocs

  • L’orchestrateur (NFV Orchestrator) : L’entité d’orchestration est responsable du cycle de vie des services réseau tant au niveau logicielle que matérielle sur plusieurs domaines en contrôlant les VIM de chaque domaine;
  • un  gestionnaire (VNFM) en charge du cycle de vie des instances VNFs en fonction des données contenues dans le descripteur. Il démarre les instances VNF, les gères, les adapte et récupère des indicateurs de supervision. Le gestionnaire VNFM utilise donc le descripteur VNFD durant la procédure d’instanciation de la fonction réseau virtualisée VNF et pendant toute la durée de vie de la VNF ;
  • un gestionnaire (VIM) en charge de la gestion des ressources du NFVI à l’intérieur d’un domaine.

Le gestionnaire VIM est une abstraction matérielle qui fourni une interface nord pour le VNFM et l’orchestrateur NFV. L’interface sud supporte les interfaces Nf-Vi pour piloter les instances sur l’infrastructure NFVI.

 

La figure ci-dessous présente un schéma de déploiement au sein d’Orange avec l’appui de Juniper et d’un controleur sous Openstack.

 

Related posts:

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *