E2E Network Slicing : le découpage du réseau de bout en bout (Partie 2)

Captcha loading...

Cet article est la suite de :

« E2E Network Slicing : le découpage du réseau de bout en bout (Partie 1)

III) La virtualisation du cœur de réseau

Les entités du cœur de réseau AMF, SMF, NEF, PCF sont des fonctions qui peuvent être virtualisées. Ces fonctions gèrent le plan de contrôle du réseau de mobiles et les performances fonctionnelles sont analysées au niveau du support opérationnel OSS (FCAPS).

L’entité UPF peut également être virtualisée, cette fonction gère le plan utilisateur. La fonction UPF possède des capacités d’aiguillage de trafic à partir de la classification de flux UL-CL (Uplink Classifier). Ainsi, la fonction UPF peut avoir le rôle de point de branchement (multi-homing), point d’ancrage de session (PSA : PDU Session Anchor) ou classificateur de flux pour définir le prochain saut. La classification de flux est une fonctionnalité supportée par la fonction UPF afin de diriger le trafic localement en fonction des filtres appliqués au trafic UE.

Le contrôle des fonctions virtuelles dans le cœur de réseau 5G est réalisé par deux fonctions nommées NSSF (Network Slice Selection Function) et NRF (Network Repository Function).

  • Le rôle du NSSF est de sélectionner le jeu de tranches réseau que l’utilisateur va pouvoir utiliser en fonction de son contrat d’abonnement (SLA) pour lui apporter la QoE (Quality of Experience) souhaitée. Le choix du slice se faisant au moment de l’enregistrement du mobile, la fonction NSSF dialogue avec la fonction AMF ou la fonction NSSF d’un autre PLMN.
  • Le rôle du NRF est de fournir un contrôle des fonctions virtuelles (NF) et des services proposés par les fonctions virtuelles.
    • La fonction NRF est un catalogue qui est mis à jour au moment de l’activation de la fonction virtuelle (enregistrement) et mis à jour lorsque la fonction virtuelle est redimensionnée. Elle propose ainsi un service de découverte de fonctions virtuelles
    • Toute fonction virtuelle NF peut demander à la fonction NRF, par une procédure de souscription, d’être informée dès qu’une nouvelle instance est créée.

Figure 5 : Inscription d’une fonction virtuelle au niveau de la fonction NRF (TS 29.510)

Une sous-instance virtuelle est composée au minimum de fonctions AMF, SMF, PCF, NRF. L’opérateur (OSS) met en place un ou plusieurs sous réseaux virtuels SNI et peut à tout moment activer ou désactiver un sous-réseau (procédure NSI figure 3). Chaque fonction activée vient se déclarer auprès de la fonction NRF (figure 5).

Une instance de réseau permet de gérer un type de service. Le type de service est défini par la variable S-NSSAI. Le S-NSSAI contient 2 champs :

  • SST sur 8 bits défini le type de slice (Slice Service Type)
    • SST = 1 : eMBB (normalisée 3GPP) ;
    • SST = 2 : URLLC (normalisée 3GPP) ;
    • SST = 3 : mMTC (normalisée 3GPP) ;
    • SST = 4 : V2X (normalisée 3GPP) ;
    • SST de 128 à 255 sont définis par l’opérateur.
  • SD (Slice Differentiator) est une information optionnelle qui permet de décliner plusieurs types de sous-service dans une catégorie SST donnée afin de différencier les clients.

La fonction NSSF permet d’identifier les NSI. Cette fonction est configurable via une API REST.

Voici un exemple de configuration de la fonction NSSF :

https://host:port/v1/nssf/configurations/nsiprofiles
POST
Content-Type: application/json
BODY
{
    « name »: « NSI001 »,
    « nrfUri »: « https://nrf.bloglaunay.com »,
    « nsiId »: « 1 »,
    « targetAmfSets »:
    [
        {
            « regionId »: « 01 »,
            « setId »: « 001 »,
            « setFqdn »: « set001.region01.amfset.5gc.mnc111.mcc208.3gppnetwork.org »
        },
        {
            « regionId »: « 01 »,
            « setId »: « 002 »,
            « setFqdn »: « set002.region01.amfset.5gc.mnc111.mcc208.3gppnetwork.org »
        }
    ]
}

Pour être plus complet, la configuration de la fonction NSSF permet aussi de diriger le choix de la fonction NRF en fonction du NSSAI demandé.

D’un point de vue opérateur : Lorsqu’une tranche de réseau est mise en œuvre, la fonction AMF peut toujours mettre à jour la configuration S-NSSAI de la fonction NSSF afin d’informer celle-ci des types de service supportés par la fonction AMF sur une zone de localisation TA.

Une fonction AMF peut gérer plusieurs tranches de réseaux S-NSSAI (il n’y a pas de limite fixée au niveau du cœur de réseau).

Figure 6 : La mise à jour de la fonction NSSF

L’entité NSSF sélectionne le (ou les) instances de réseau NSI correspondant(s) à la demande du mobile à partir du (ou de la liste des) S-NSSAI et détermine ainsi les fonctions AMF candidates correspondant spécifiquement (ou au mieux) à la demande de l’UE. Eventuellement, l’entité NSSF interroge la base de données NRF (Network Repository Function).

Figure 7 : Procédure d’enregistrement et sélection du NSI

L’entité NSSF renvoie à la fonction AMF qui l’a interrogée, la valeur NSSAI autorisée sur la zone TA et la liste des fonctions AMF candidates (figure 7).

Lorsque la station de base s’active (mise en route ou suite à une procédure de ré-initialisation), elle interroge les fonctions AMF pour connaître les tranches de réseaux (slices) supportées par chaque fonction AMF accessible comme le montre la figure 8.

 

Figure 8 : La déclaration des slices supportées par les fonctions AMF auprès de l’entité gNB

Si la station de base gNB était déjà en fonctionnement, alors elle est informée des modifications NSSAI apportées au niveau de la fonction AMF via le message NG Setup request (figure 9).

Figure 9 : La mise à jour des slices supportées par les fonctions AMF auprès de l’entité gNB

Lorsque le mobile s’active, il réalise une procédure d’attachement auprès d’une fonction AMF. L’attachement se fait sur une fonction AMF parmi toutes les fonctions AMF qui ont été activées par le support opérationnel OSS et accessible par la station de base gNB.

La sélection de l’entité AMF est réalisée au moment de la procédure d’attachement. Le choix est effectué à partir de l’identifiant NSSAI émis dans la requête NAS REGISTER. La station de base gNB reçoit la requête RRC qui porte le message NAS et l’indicateur NSSAI à partir duquel il sélectionne une fonction AMF. Si plusieurs fonctions AMF candidates peuvent être choisies (cf figure 8), la station de base gNB fait son choix par équilibrage de charge.

La fonction AMF sélectionnée par l’entité gNB interroge la base de données UDM pour vérifier que l’indicateur NSSAI demandé par le terminal (requested NSSAI) est accepté. L’entité UDM transmet à la fonction AMF le NSSAI autorisé pour ce client (allowed NSSAI). A partir de ce moment, la fonction AMF consulte la fonction NSSF (Network Slicing Selection Function) à partir d’une requête GET en indiquant la liste des S-NSSAI autorisés.

Si après consultation de la fonction NSSF, la fonction AMF sélectionnée initialement (appelée AMF source) par la station de base n’est pas appropriée pour les services demandés (NSSAI), alors la fonction AMF source réalise la procédure de ré-allocation de la fonction AMF.

Concernant la ré-allocation (lors de la procédure d’attachement), deux options sont possibles :

Dans le cas de l’option A (figure 10), en fonction des informations de souscription et de politique locale, la fonction AMF source décide d’envoyer la requête initiale vers la fonction AMF cible via le message Namf_Communication_N1MessageNotify portant le message NG-RAN Reroute Message.

Cependant, comme il ne peut y avoir qu’un seul point de terminaison N2 entre l’entité gNB et la fonction AMF pour un UE donné, la fonction AMF cible met à jour le point de terminaison auprès du gNB via le message NG AMF Configuration Update.

 

Figure 10 : Procédure de ré-allocation de la fonction AMF pour la gestion des transches de réseau du mobile UE : Option A

Dans le cas de l’option B (figure 11), en fonction des informations de souscriptions et de politique locale, la fonction AMF source décide d’envoyer le message NGAP Reroute NAS Message à l’entité gNB afin que celle-ci formule une nouvelle requête d’attachement vers la fonction AMF cible.

Figure 11 : Procédure de ré-allocation de la fonction AMF pour la gestion des tranches de réseau du mobile UE : Option B

Au niveau du cœur de réseau, le mobile s’enregistre sur une seule fonction AMF.

Le mobile peut demander à profiter de plusieurs tranches de réseaux (figure 12), les fonctions AMF, NSSF font parties des fonctions communes à toutes les tranches. Les fonctions PCF et NRF peuvent être communes ou spécifiques à une tranche de réseau.

Pour que le mobile puisse recevoir ou émettre des données, il faut mettre en place une session PDU. La session PDU est contrôlée par la fonction SMF, avec des règles PCF spécifiques.

Figure 12 : Les tranches de réseaux : Fonctions communes et spécifiques.

Il est aussi possible d’ajouter des fonctionnalités supplémentaires comme imposer la direction de trafic (trafic steering) en sortie du réseau de mobiles Gi-LAN afin d’apporter des services comme de l’optimisation vidéo, optimisation http, un cache CDN, un cache de réalité virtuelle, un détecteur de malware, une fonction parentale, un parefeu, …

Au niveau du mobile, le mobile fait une demande d’enregistrement auprès du cœur de réseau. Le mobile indique dans sa requête NAS les tranches de réseaux souhaitées (Requested NSSAI). Le requested NSSAI correspond soit au NSSAI configuré pour le PLMN (configured NSSAI), soit au NSSAI autorisé pour le PLMN (allowed NSSAI). Ce dernier (allowed NSSAI) a été récupéré lors d’un précédent enregistrement. Si le mobile n’a aucun NSSAI configuré pour le PLMN sur lequel il s’enregistre, alors il transmet l’information NSSAI configurée par défaut (Default configured NSSAI).

L’information NSSAI est configurée sur la mémoire non volatile du mobile. Il ne revient pas au standard 3GPP d’indiquer où est stockée cette information mais aux fabricants de terminaux. Le mobile peut contenir plusieurs informations NSSAI, chaque NSSAI est couplée à l’identifiant SUPI et est identifiée par le PLMN ID (cf. TS 24.501). Si on change l’identifiant SUPI, les informations NSSAI sont supprimées de la mémoire du terminal.

Dans le cas des smartphones, l’information NSSAI est configurée par défaut (Default configured NSSAI).

Dans le cas des terminaux IoT et URLCC, l’information NSSAI devrait être provisionnée afin de limiter l’impact de charge au niveau de la fonction AMF grand public lorsque les terminaux IoT s’allumeront.

Le mobile doit stocker les informations S-NSSAI du HPLMN. Si le mobile est enregistré sur un réseau visité VPLMN, le mobile doit aussi sauvegarder le NSSAI configuré pour ce VPLMN et doit faire la correspondance avec les S-NSSAI qu’il peut exploiter sur le réseau HPLMN. Le mapped NSSAI est utilisé en roaming pour faire la correspondance entre un S-NSSAI spécifique (128 à 255) du réseau H-PLMN et le S-NSSAI correspondant dans le VPLMN.

Lorsque le mobile demande l’établissement d’une session PDU, il transmet dans le message NAS l’information S-NSSAI souhaitée et des règles URSP (UE Route Selection Policy).

 

Le dernier paragraphe sera traité dans un autre article.

E2E Network Slicing : le découpage du réseau de bout en bout (Partie 1)

Le découpage du réseau (Network Slicing)

Au cours de cet article, nous allons décrire plus précisément le découpage du réseau de mobiles en reprenant plusieurs articles précédents sur la virtualisation et la programmation du réseau (NFV/SDN).

La vision du NFV dans cet article reprend les travaux de l’organisme de spécification ETSI et les fonctionnalités du SDN s’appuie sur le travail de l’ONF.

Ainsi, le SDN est vu comme un contrôleur de tranche de réseaux et un contrôleur du plan de transport, et le NFV gère l’allocation des ressources virtuellement (déploiement, dimensionnement et relachement).

Je remercie Antoine Mouquet (Expert 3GPP – Orange), Nicolas Bihannic (Chercheur Orange Labs) et le professeur Adlen Ksentini (Eurecom Sophia Antipolis) pour les échanges qui ont permis d’améliorer considérablement cet article.

Le déploiement d’un réseau 5G s’effectue en deux étapes :

  • La première étape est le déploiement d’un accès radioélectrique 5G. La 5G-NSA est la 5G non autonome. Pour le déploiement à venir (5G NSA option 3), le cœur de réseau est le réseau 4G (EPC) et l’accès radioélectrique 5G est contrôlé par une station de base 4G grâce au mécanisme de double connectivité ;
  • La deuxième étape est nommée 5G-SA, il s’agit de la 5G autonome. Le cœur de réseau est entièrement 5G permettant ainsi d’apporter de la souplesse du cœur de réseau en exploitant la virtualisation des fonctions réseaux.

Le découpage du réseau s’appuie sur la virtualisation du cœur de réseau et la virtualisation de l’accès radioélectrique. Le découpage de réseau est la solution permettant d’apporter une qualité de service spécifique (SLA : Service Level Agreement) pour les utilisateurs en fonction des usages suivants :

  • les usagers de smartphone ;
  • les entreprises ;
  • des processus verticaux (IoT) ;
  • le marché de gros (wholesale business).

L’objectif de cet article est d’expliquer le fonctionnement du découpage du réseau (network slicing). Ce découpage doit nécessairement être mis en œuvre pour pouvoir répondre aux exigences des différents services auxquels la 5G souhaite répondre. La spécification 3GPP a normalisé à ce jour 4 catégories : smartphones (eMBB), les terminaux IoT (mMTC), les communications critiques (URLLC), les véhicules connectés (autonomes : V2X), mais les opérateurs peuvent mettre en œuvre d’autres fonctionnalités dédiées.

L’article est décomposé en quatre parties techniques :

  1. la description d’un réseau basé sur les services et identifications des services ;
  2. la description d’une tranche de réseau et mise en œuvre de la virtualisation ;
  3. la virtualisation du cœur de réseaux ;
  4. la virtualisation de l’accès radioélectrique.

En conclusion, nous reviendrons sur la virtualisation des fonctions du réseau et l’avantage de cette architecture.

I) Un réseau basé sur les services (SBA : Service Based Architecture)

Le réseau de 5ème génération est avant tout un réseau cellulaire devant assurer la continuité des services offerts par le réseau de mobiles 4G. Il est ainsi conçu pour répondre aux exigences des smartphones à très haut débit, et aux exigences du marché des objets connectés.

Toutefois, le réseau de mobiles 5G s’ouvre également à des applications nécessitant des latences faibles pour des communications critiques avec une convergence des marchés PMR (Private Mobile Radio), et des offres TETRA, GSM-R (voir la spécification FRMCS : Future Railway Mobile Communication System).

L’un des objectifs des spécifications 5G est de définir un déploiement automatique de fonctions réseaux afin de répondre aux différentes exigences à respecter (KPI : Key Performance Indicator) spécifique à chaque type de services à mettre en œuvre. La stratégie est de réduire le délai de la mise sur le marché d’un service Tiers players. On parle ainsi de services verticaux et pour identifier les besoins, nous allons dans un premier temps lister de manière non exhaustive un panel de secteurs :

  • La réalité augmentée et la réalité virtuelle : l’humain interagit avec son environnement nécessitant une latence de 7 à 15 ms, un débit de 250 Mbps (3D/ 12k) à 2.34 Gbps pour de la 3D 24 k et une perte de paquets de 10-6; Le Wi-VR (Weak Interactive VR) peut nécessiter une latence RTT de 10 ms (Ultimate VR) ;
  • Le secteur de l’automobile avec des connectivités pouvant gérer des services de loisir (Infotainment), de télématique (IoT), de sécurité routière (partage d’informations, assistance à la conduite, conduite coopérative, gestion d’une file de camions (platooning), opération à distance) ;
  • Le secteur de l’énergie et du smart-grid (latence < 10 ms, disponiblité de 99,999% et un TEB de 10-9) ;
  • Le secteur de la santé (tracking de patient ou de matériel, soin à distance, soin en urgence) avec le téléchargement d’imagerie radio jusqu’à la télé-chirurgie ;
  • Le secteur de l’industrie 4.0 (smart factory) : automatisation du processus de fabrication, logistiques, maintenance prédictive, systèmes cyber-physiques (C2C : Control To Control Communication), robots mobiles;
  • Le secteur de l’IoT avec la technologie LPWAN qui permet à titre d’exemple la gestion des déchets, le suivi des mobiles, la mesure de consommation (gaz, électricité, eau, …), la détection de fuite, le parking intelligent ;
  • La sécurité publique (Push To Talk, vidéo, …) répondant aux exigences du réseau TETRA;
  • Le secteur du smart-cities (lampadaire intelligent, sécurité publique par détection de bruit).

La liste est non exhaustive, et chaque service nécessite des caractéristiques que l’on peut résumer avec les critères suivants :

  • latence ;
  • débit ;
  • sécurité de la communication;
  • mobilité ;
  • localisation ;
  • accessibilité ;
  • disponibilité ;
  • résilience ;
  • densité de connexion.

Les indicateurs de performance doivent être respectés au niveau du cœur de réseau et de l’accès radioélectrique.

Figure 1 : Des exemples de services 5G

II) Description d’une tranche de réseau et mise en œuvre de la virtualisation

II-1) Définition

La spécification 3GPP défini :

  • Un modèle d’une tranche de réseau (Network Slice Template). Le NST est une description complète d’une tranche de réseau en listant les fonctions virtuelles, les ressources matérielles nécessaires pour chaque fonction en vue de gérer le plan de trafic de bout en bout. Ce modèle sert de référence pour instancier une tranche de réseau ;
  • Une instance de tranche de réseau (NSI : Network Slice Instance) correspond aux entités du réseau de mobile qui répondent aux indicateurs de performances demandés par le support opérationnel et fonctionnel (OSS/BSS). Une entité est une ressource matérielle et une fonction logicielle déployée au moment de la création de l’instance. Afin de simplifier le réseau de mobile, chaque instance se décompose de sous-instance (SNI : Sub Network Instance) qui sont partagées. Ainsi, une instance de tranche de réseau est composée d’une sous-instance RAN (Radio Access Network), d’une sous-instance de cœur de réseau 5G CN (Core Network). Une sous-instance SNI peut appartenir à plusieurs instances de tranche de réseau ;
  • Un support opérationnel et de supervision. Afin de s’assurer que les indicateurs de performances soient respectés à tout instant, la tranche de réseau (NS : Network Slice) contrôle l’instance de tranche de réseau (NSI) à partir de fonctions de gestion et de supervision. La supervision permet d’alerter le contrôleur si les performances se dégradent et le contrôleur va pouvoir gérer de nouvelles entités ou mettre à l’échelle une ou plusieurs entités (scalability and elasticity).

La supervision d’une tranche de réseau est essentielle pour valider la qualité de service (QoS) et le respect des indicateurs de performance.

L’isolation opérationnelle de chaque tranche permet aux utilisateurs verticaux (OTT ou entreprise) de pouvoir configurer, superviser, contrôler leur tranche de réseau de manière indépendante.

L’isolation au niveau du réseau signifie que les clients verticaux ont des ressources dédiées. La description des slices permet à un utilisateur de profiter de fonctions réseaux dédiées et d’un accès radioélectrique partagé. Le client étant ici le demandeur de service auprès d’un opérateur, et l’utilisateur est celui qui utilise le service en bout de chaîne (terminal).

L’isolation opérationnelle permet donc de partager des ressources matérielles et logicielles comme des hébergeurs de cloud, en isolant les fonctions réseaux entre elles.

L’isolation au niveau réseau (figure 2) permet de proposer des ressources dédiées, à la fois au niveau du cœur de réseau, mais également au niveau de l’accès radioélectrique (RAN dédié). Des applications comme la sécurité civile ou le smart-grid peuvent nécessiter une isolation du réseau. Les réseaux PNI-NPN (Public Network Integrated Non-Public Network) sont des réseaux dédiés dont l’accès radioélectrique peuvent être partagés avec le réseau PLMN.

Figure 2 : Les ressources dédiées ou partagées du réseau de mobiles 5G

A l’instar des solutions portées par les hébergeurs cloud, il n’est pas nécessaire de déployer une tranche de réseau (slice) par client vertical, mais de partager le slice entre plusieurs clients.

II-2) Gestion d’une NSI (Network Slice Instance)

L’instance est mise en œuvre à partir d’un gabarit et la procédure de déploiement et d’activation d’un slice est défini par les étapes suivantes (figure 3, 3GPP SA5).

Figure 3 : Gestion d’un slice. De l’activation à la désactivation

La procédure (figure 3) met en œuvre les entités du réseau de mobiles 5G en gérant la durée de vie des instances à partir des fonctionnalités NFV décrites par l’organisme ETSI (se référer à l’article : http://blogs.univ-poitiers.fr/f-launay/tag/5g-nfv/).

Une tranche de réseau NSI peut contenir des fonctions réseaux physiques (PNF : Physical Network Function) ou virtuelles (VNF : Virtual Network Function).

Le réseau de transport n’est pas défini dans le cadre du travail de l’organisme 3GPP.

II-3) La virtualisation des fonctions du réseau

La figure 4 rappelle l’architecture système pour la mise en œuvre de fonctions virtuelles.

Figure 4 : L’architecture ETSI NFV

On identifie 3 groupes :

Le premier groupe est le système de gestion des réseaux de mobiles. Il est composé :

  • d’un support système OSS (Operation Support System). Le support OSS est une suite logicielle permettant d’administrer le réseau opérateur et de superviser les ressources. Le support OSS maintient un inventaire des entités réseaux, provisionne des services, configure les entités et récupère les éléments de supervision de chaque entité réseau ;
  • d’un support commercial (Business Support System). Le support BSS gère le déploiement de services à la demande des clients. Il offre ainsi les outils logiciels pour gérer les commandes jusqu’à la mise en paiement des services.
  • D’un support de gestion et de supervision (EM/DM). La gestion EM/DM permet de contrôler et de superviser les fonctions virtuelles et les ressources matérielles.

Le deuxième groupe est le système de gestion et d’orchestration des ressources matérielles et virtuelles (NVF – MANO : Management and Orchestration). Il a pour rôle :

  • sous l’ordre du support système OSS, l’orchestrateur MANO ordonne le déploiement ou la libération de fonctions virtuelles en respectant les contraintes matérielles inhérentes à chaque fonction ;
  • de superviser le bon fonctionnement des fonctions logicielles et des ressources matérielles allouées ;
  • de contrôler le déploiement de machines virtuelles ou de containeurs, de vérifier l’allocation de ressources et de libérer les ressources ;
  • de conserver des contextes sur les ressources utilisées, les ressources restantes, les images des fonctions virtuelles et les gabarits de chaque fonction virtuelle.

Le 3ème groupe correspond aux machines physiques et au déploiement des instances, ainsi que les fonction de routage.

II-4) Le système de gestion des réseaux de mobiles

II-4-1) OSS/BSS et NM

La phase de préparation est réalisée au niveau du support système OSS/BSS par la fonction Gestion de Réseau (NM : Network Management) via un contrôleur de slice. On peut trouver également l’acronyme NSMF (Network Slicing Management Function). Ce dernier soumet l’ordre à un orchestrateur (à travers le point de référence Os-Ma-nfvo) qui va pouvoir gérer l’infrastructure de virtualisation à partir du modèle de slice.

Le NSMF prend en charge le déploiement du end-to-end slice. On pourrait le nommer un end-to-end slice orchestrateur.

Le gestionnaire de réseau (NM) fourni les fonctions de gestion du réseau de mobiles, ce qui inclut les fonctions de virtualisation. Le NM supporte les fonctions de gestion FCAPS (fault, configuration, accounting, performance, security) du cœur de réseau 5GC et du réseau IMS. Il supervise le FCAPS spécifique pour maintenir et exposer le SLA.

Dans le cas de la gestion de slice, c’est le gestionnaire de réseau MN qui initie la gestion du cycle de vie de chaque fonction virtuelle (figure 3).

II-4-2) EM

Le gestionnaire d’élément (EM : Element Manager) est responsable de la gestion FCAPS au niveau d’un élément logiciel VNF (Virtual Network Function) ou d’un élément matériel (NE : Network Element). Les fonctions du gestionnaire d’entité correspondent à :

  • la gestion de fautes;
  • la gestion de la configuration ;
  • la gestion des éléments de facturation ;
  • la collection des mesures de performance à effectuer ;
  • la gestion des éléments de sécurité.

Un gestionnaire d’éléments peut gérer des fonctions virtuelles à travers des interfaces propriétaires. Un gestionnaire d’éléments peut aussi être une fonction réseau virtuelle.

 

II-4-3) NFV-MANO

II.4.3.1) NFVO

L’orchestrateur joue un rôle primordial :

  • Il gère l’orchestration de ressources : il coordonne l’attribution des ressources matérielles : l’orchestrateur autorise, met à l’échelle, libère les ressources physiques (NFVI : Network Function Virtualization Infrastructure) parmi l’ensemble des DataCenters (DC). Il ordonne les ordres au gestionnaire de ressource matérielle (VIM : Virtualized Infrastructure Manager) à travers le point de référence Or-Vi ;
  • Il gère l’orchestration de service : il contrôle l’établissement ou la libération d’une ou plusieurs fonctions virtuelles VNF en ordonnant l’ordre au gestionnaire VNFM via l’interface Or-Vnfm.
  • il gère la topologie des NSI (nommé VNF Forwarding Graph dans l’article : http://blogs.univ-poitiers.fr/f-launay/2018/02/04/network-functions-virtualisation-nfv-pour-le-reseau-4g5g/)

Pour gérer les services réseaux, l’orchestrateur s’appuie sur des catalogues de ressources définissant le gabarit souhaité :

  • Catalogue VNFD contient le descripteur de chaque instance VNF en terme de déploiement et de fonctionnement (pour la gestion FCAPS) ;
  • Catalogue de service permet de lister l’ensemble des fonctions VNF à cascader pour obtenir un sous réseau d’instances (SNI) ;
  • Catalogue NFVI contenant les ressources nécessaires pour mettre en œuvre un service NFV.

II.4.3.2) VNFM

Le gestionnaire VNFM (Virtual Network Function Manager) gère :

  • Le cycle de vie des fonctions virtuelles VNF : création, mise à l’échelle, maintenance et libération des instances VNF ;
  • Supervise et détecte les fautes (FCAPS) des fonctions virtuelles VNF.

Il expose :

  • une interface nord à l’orchestrateur à travers le point de référence Or-Vnfm ;
  • une interface sud pour injecter des règles au gestionnaire de ressource à travers le point de référence vi-Vnfm.

II.4.3) VIM

Une infrastructure matérielle est un serveur COTS hébergeant un hyperviseur. L’infrastructure est découpée en domaine, chaque domaine porte une VM ou un containeur.

Le gestionnaire VIM gère :

  • les ressources des infrastructures NFVI (stockage, CPU, carte réseau, …) d’un domaine ;
  • les ressources virtuelles (machines virtuelles et/ou containeur) du domaine ;
  • l’hyperviseur.

Ainsi, le gestionnaire VIM gère le cycle de vie des ressources virtuelles allouées à un domaine, conserve l’appairage entre la machine virtuelle et la machine physique, analyse via un agent les performances matérielles, logicielles et virtuelles et gère les performances et les fautes.

Il expose :

  • une interface nord à l’orchestrateur à travers le point de référence Or-Vi ;
  • une interface nord au gestionnaire de machine virtuelle VMF à travers le point de référence vi-Vnfm.

II.4.4) Pour aller plus loin

Il y a une différence entre le gestionnaire d’éléments (EM) et le gestionnaire de fonctions réseau virtuelles (VNFM) : Le gestionnaire d’éléments EM supervise la partie fonctionnelle du réseau de mobiles alors que le gestionnaire VNMF gère les entités virtuelles.

L’infrastructure NFVI est décomposée en plusieurs parties :

  • les ressources matérielles : CPU, mémoire RAM, carte réseau. Un commutateur (exemple TOR) et un élément de stockage fait également parti des ressources matérielles ;
  • la couche de virtualisation : Cette couche permet de faire abstraction des ressources matérielles en offrant des ressources logiques. Cette abstraction est réalisée par l’hyperviseur.

La suite dans un autre article.

 

 

 

 

Network Functions Virtualisation (NFV) pour le réseau 4G/5G

Objectifs :

Comprendre :

  • l’infrastucture du NFV (NFVI);
  • la gestion et l’orchestration des VM (MANO)
  • la fonction de chainâge de service VNFFG (Virtual Network Function Forwarding Graph). Le VNFFG correspond à la fonction SFC pour le NFV (reprendre l’article précédent pour le SFC)

Introduction

L’approche NFV permet à l’opérateur de déployer des fonctions réseaux en tant qu’instances virtualisées au lieu d’entités matérielles dédiées. L’approche NFV s’appuyant sur la virtualisation informatique permet la création de partition réseau isolée sur une infrastructure réseau partagée permettant ainsi à de multiples réseaux virtuels hétérogènes de co-exister simultanément sur les mêmes équipements matériels.

L’architecture NFV définie par l’ETSI est représentée sur la figure 1. La couche horizontale VNF correspond aux fonctions réseaux virtualisée (VNF : Virtualised Network Function). Il s’agit de machines virtuelles (VM) fonctionnant sur l’infrastructure NFV (NFVI). L’infrastructure NFVI est une infrastructure physique de stockage, de calcul et de réseau. La gestion et l’orchestration des VM est sous la responsabilité de la fonction MANO (Management and orchestration). La fonction MANO doit gérer les ressources de l’infrastructure NFVI (capacité réseau, la puissance de calcul, l’espace mémoire) et la durée de vie des fonctions virtuelles en fonctionnement sur l’infrastructure NFVI (création et allocation des VMs).

Les nœuds de l’infrastructure NFV (NFVI nodes) sont déployés sur les points de présence POP de l’opérateur afin de répondre aux exigences de latence selon les cas d’usages client. Les fonctions réseaux virtualisés (VNF) peuvent ainsi être déployées dynamiquement sur les infrastructures NFVI à la demande d’un orchestrateur et sous réserve de la limite de capacités des nœuds NFI (POP).

Figure 1 : Architecture NFV

La virtualisation élimine la dépendance entre les fonctions réseaux (NF : Network Function) et le matériel. Dans le cas du réseau de mobiles, les entités pouvant être virtualisées sont :

  • dans le cœur réseau EPC : l’entité MME, le SGW, le PGW
  • dans le cœur réseau IMS : P/I/S-CSCF

Une fois que les entités sont virtualisées (on parle alors de VNF), il est nécessaire de chaîner le trafic à travers les VNF dans un graphe ordonné pour appliquer les services réseaux. Dans le cas du NFV, le chaînage s’appelle le graphe d’acheminement des fonctions réseaux virtualisées (VNFFG – VNF  Forwarding Graph) et non le chaînage de fonctions service SFC (Service Function Chain) pour prendre en compte la virtualisation sur un réseau Overlay.

Le graphe d’acheminement des fonctions réseaux virtualisées VNF-FG fourni un niveau d’abstraction afin que l’opérateur puisse en temps réel composer les services réseaux.

Figure 2 : Exemple de graphe d’acheminement des fonctions réseaux virtualisées

Figure extrait de l’article Network Functions Virtualisation  -Update White Paper (https://portal.etsi.org/nfv/nfv_white_paper2.pdf)

II) L’architecture NFV définie par l’ETSI

L’architecture NFV est constituée de :

  • l’insfrastructure NFV : NFVI (Network Function Virtualisation Infrastructure) fournit les ressources matérielles (serveurs, COTS – Commercial Off The Sheld, cartes électroniques, …) et le logiciel de virtualisation. Le NFVI se compose donc :
    • d’une interface matérielle (stockage, réseau, calcul)
    • d’une interface virtuelle (stockage, réseau, calcul)
    • d’une couche de virtualisation entre le matériel et le logiciel
  • Le VNF (Virtualised Network Function) correspond aux fonctions réseaux virtualisées pouvant être exécutées sur les équipements du NFVI
  • NFV M&O (Management and Orchestration) permettant de gérer les services réseaux de bout en bout est composé de trois blocs
    • L’orchestrateur (NFV Orchestrator) : L’entité d’orchestration est responsable du cycle de vie des services réseau tant au niveau logiciel que matériel sur plusieurs domaines en contrôlant les VIM de chaque domaine;
    • un  gestionnaire (VNFM) en charge du cycle de vie des VNFs ;
    • un gestionnaire (VIM) en charge de la gestion des ressources du NFVI à l’intérieur d’un domaine.

Les services OSS/BSS doivent pouvoir transmettre au bloc NFV M&O des informations sur le profil des utilisateurs, la facturation, les politiques de qualités, les accords entre domaine, …

Couplé à un portail de supervision, cette architecture permet aussi de déployer des services réseaux à la demande pour les entreprises (exemple Network as a service  de la solution  Easy Go Network).

L’infrastructure NFV (NFVI) est donc répartie sur des points de présence de l’opérateur (POP) afin de réduire la latence du réseau pour ses clients : les services réseaux sont déployés sur les nœuds d’infrastructure (NFVI Node) au plus proche des clients.

Les fonctions réseaux virtualisées (VNF) peuvent ainsi être déployées dynamiquement à la demande dans la limite des capacités des nœuds NFVI.

II-1) L’infrastructure NFV (NFVI)

L’infrastructure NFV se découpe en trois domaines :

  • domaine de calcul virtualisé (processeurs, accélérateurs, …) ;
  • domaine de l’hyperviseur : système d’exploitation supportant la virtualisation (machines virtuelles) et/ou des containeurs pour faire fonctionner les VNF, ainsi que les capacités de commutateurs virtuels (vSwitch).
  • domaine réseau de l’infrastructure

En général, l’infrastructure NFV s’appuie sur la paravirtualisation et non la virtualisation : les systèmes d’exploitation des machines virtualisés n’évoluent pas dans un environnement physique virtuel mais dialogue avec l’hyperviseur via des API. La para-virtualisation réduit la consommation de ressources processeur de la virtualisation afin d’améliorer les performances en modifiant le noyau du système d’exploitation invité. Une couche de virtualisation est insérée entre le matériel et le système d’exploitation.

Le coeur de la paravirtualisation est un hyperviseur fonctionnant au plus près du matériel, et fournissant une interface qui permet à plusieurs systèmes hôtes d’accéder de manière concurrente aux ressources. Les systèmes d’exploitation hôte et invités sont modifiés pour fonctionner sur la couche de virtualisation

Figure 3 : L’infrastructure et la para-virtualisation

Les fonctions réseaux virtualisées seront déployées dans des conteneurs au-dessus de la couche de virtualisation. Un conteneur est une instance complète de système d’exploitation, avec son système de fichiers, ses comptes utilisateurs, ses processus, etc. Ainsi, les conteneurs logiciels sont considérés comme des applications pour le serveur. Sur cette application (système d’exploitation), il est possible de faire tourner des fonctions réseaux virtuels, nommés VNF

Enfin, les VNF sont interconnectées entre elles pour constituer un service réseau (NS).

Figure 4 : Le chainage de service réseaux virtuels

II-2) La gestion et l’orchestration NVF (NFV MANO – Management and Orchestration)

La couche de virtualisation permet de découpler l’implémentation logicielle des fonctions réseaux aux ressources matérielles (calcul, accélérateur et ressources réseaux). Ce découplage nécessite de nouvelles fonctions de gestion et d’orchestration et créé de nouvelles dépendances entre les ressources matérielles et les solutions logicielles virtualisées.

Une des premières motivations du NFV est l’agilité à déployer des nouvelles fonctions réseaux et d’accroitre les capacités de ces fonctions à la demande (exemple : une entreprise qui souhaite une bande passante plus importante une heure particulière dans la semaine, cf : https://www.youtube.com/watch?v=niHSqvKz4U0).

Afin de pouvoir profiter de cette agilité, un niveau d’automatisation de haut niveau est nécessaire pour provisionner, configurer et tester les performances des fonctions réseaux virtualisées.

La gestion et l’orchestration NFV (MANO) automatise le déploiement de fonctions réseaux virtualisées (VNF). Pour cela, il faut superviser :

  • L’infrastructure pour la gestion du matériel (capacité, réseau, calcul, …)
  • Le déploiement de fonctions réseaux (VNF)
  • Le chaînage de fonctions réseaux pour réaliser des services réseaux

Ainsi, l’entité MANO est constituée de trois fonctions :

  • Gestion des ressources
  • Gestions des VNF
  • Gestion des NS

Figure 5 : L’orchestration et la gestion des services et des ressources

L’objectif est de pouvoir mettre en œuvre des fonctions pour fournir des fonctions réseaux virtualisés et des services réseaux avec les ressources nécessaires pour s’exécuter correctement : les types d’instances à déployer, adapter la taille de l’instance en fonction de la demande (scaling) , mettre à jour une fonction réseau virtualisée (VNF), ou éteindre l’instance.

Au niveau réseau, les opérations de déploiement de service réseaux s’appuient des descripteurs décrivant les ressources et les opérations nécessaires. Les différents types de descripteurs sont :

  • Descripteurs VNF (VNFD) sont des gabarits permettant de définir les instances à mettre en œuvre et les besoins en ressource de chaque instance (CPU, mémoire, interface et réseau). Le descripteur défini également les types d’interfaces avec l’infrastructure NFVI et les KPI attendues.
  • Descripteur NS (NSD) : Le descripteur NSD contient les attributs pour un groupe de fonctions réseaux qui constituent ensemble un service réseau. Ces attribues contiennent aussi les exigences pour chaîner les VNF ensemble et fournir le service réseau.
  • Descripteur VNFFG (VNFFGD) contient des metadata concernant le graphe d’acheminement des fonctions réseaux virtualisées VNF, ainsi que les références aux conteneurs de l’infrastructure, aux instances VNFs et au lien entre les VNFs. Les métadonnées contiennent de plus des règles de politiques pour les fonctions d’acheminement (règle de routage et de commutation).

De plus, il est nécessaire :

  • d’automatiser les fonctions de supervisions en collectant les métriques de performances sur des instances et du matériel à des niveaux différents
  • de corréler les mesures effectuées afin d’apporter une solution sur les fautes détectées pour que le service fonctionne de manière fiable sur des équipements distribués.
  • de définir des performances KPI (Key Performance Indicator) au niveau des services réseaux (NS)

Comme évoqué précédemement, le bloc NFV M&O (Management and Orchestration) permet de gérer les services réseaux de bout en bout est composé de trois blocs

  • L’orchestrateur (NFV Orchestrator) : L’entité d’orchestration est responsable du cycle de vie des services réseau tant au niveau logicielle que matérielle sur plusieurs domaines en contrôlant les VIM de chaque domaine;
  • un  gestionnaire (VNFM) en charge du cycle de vie des instances VNFs en fonction des données contenues dans le descripteur. Il démarre les instances VNF, les gères, les adapte et récupère des indicateurs de supervision. Le gestionnaire VNFM utilise donc le descripteur VNFD durant la procédure d’instanciation de la fonction réseau virtualisée VNF et pendant toute la durée de vie de la VNF ;
  • un gestionnaire (VIM) en charge de la gestion des ressources du NFVI à l’intérieur d’un domaine.

Le gestionnaire VIM est une abstraction matérielle qui fourni une interface nord pour le VNFM et l’orchestrateur NFV. L’interface sud supporte les interfaces Nf-Vi pour piloter les instances sur l’infrastructure NFVI.

 

La figure ci-dessous présente un schéma de déploiement au sein d’Orange avec l’appui de Juniper et d’un controleur sous Openstack.