Evolution de l’architecture du réseau 4G pour le M2M : AESE – Part 2

(Suite de l’article précédent)

2) La procédure de déclenchement

La procédure de déclenchement a été proposée dans la recommandation technique de la release R.10 afin de permettre à un dispositif IoT de répondre à une sollicitation du portail client (SCS). La procédure de déclenchement de dispositif est normalisée dans la release R.11 et nécessite une première phase d’enregistrement de la part du serveur SCS auprès de l’entité SCEF ou MTC-IWF avec comme droit d’émettre des requêtes de réveil (Trigger Request). La phase d’enregistrement a pour but de créer un identifiant de transaction et les droits de requêtes formant ainsi une entrée dans la table de contexte de l’entité MTC-IWF/SCEF à laquelle se rajoute l’identifiant du ou des dispositifs à réveiller. Le dispositif peut s’identifier à partir de son numéro MSISDN, d’un identifiant externe sauvegardé sur le serveur MTC AAA de l’opérateur ou d’un identifiant de groupe.

Dans les spécifications 3GPP de la Release 11, l’entité SCS contacte l’entité MTC-IWF via une requête DIAMETER afin que ce dernier puisse réveiller le dispositif. Lorsque l’entité MTC-IWF reçoit une demande de réveil, il contacte d’abord la base de données HSS (ou le HLR) afin de convertir l’identité publique en une identité interne au réseau opérateur (identifiant IMSI). L’entité HSS/HLR peut éventuellement contacter un serveur d’authentification MTC-AAA pour convertir une identité externe en un numéro IMSI. Si l’identité de l’UE MTC est reconnue, l’entité MTC-IWF récupère les informations de souscription du afin de mettre en relation le portail client SCS avec le dispositif.

L’entité MTC-IWF définit la méthode de réveil la plus adéquate sur le plan de contrôle pour déclencher une mesure au niveau du dispositif à partir des informations suivantes :

  • Les informations actuelles d’accessibilités de l’UE (sur quel réseau l’UE est situé, et sur quel zone) ;
  • Les méthodes de déclenchement de service supporté par le réseau HPLMN ou VPLMN ;
  • Les méthodes de déclenchement supportées par l’UE ;
  • Les politiques de déclenchement de réveil de l’opérateur ;
  • Autres informations reçues de la part du serveur SCS dont potentiellement la localisation du dispositif si celle-ci est connue. La localisation permet d’optimiser le paging à la cellule et non à la zone de localisation TAI (Tracking Area Identifier).

Les méthodes de réveil possible sont :

  • MT SMS. L’UE doit pouvoir reconnaître dans le message un MT SMS provenant du SCS ;
  • Cell Broadcast : La procédure Cell Broadcast permet de réveiller un dispositif UE en émettant des informations sur les SIB portés par le canal balise ;
  • Signalisation NAS ;
  • Messages IMS.

De manière plus explicite, la figure 3 présente le call flow de la procédure de déclenchement. On suppose que le serveur SCS s’est préalablement enregistrée auprès de l’entité MTC-IWF et au cours de la procédure d’enregistrement, le portail client SCS a associé le dispositif UE à réveiller. L’entité SCS connait l’adresse IP de l’entité MTC-IWF, dans le cas contraire, le portail client SCS fait une requête DNS.

La demande de réveil est initialement déclenchée par une API provenant du serveur d’application Client vers l’entité SCS (non présente sur le call-flow). L’entité SCS transmet le message Request Device trigger à l’entité MTC-IWF (éventuellement après une requête DNS) dans la commande DIAMETER DAR (Device Action Request) à travers l’interface Tsp.

Le message DAR contient les informations suivantes (AVP) :

  • Le type de message : Device Trigger Request
  • Le MSISDN ou une identité externe correspondant à l’UE MTC à réveiller
  • L’identité du SCS qui émet la requête.
  • Un numéro de référence de la demande de requête de réveil
  • Les données de Trigger contenant données à transmettre à l’UE MTC lors de la demande de réveil comme :
  • Priorité du trigger
  • L’identification du port de l’application à exécuter au niveau du dispositif
  • Une durée de validité du message de réveil. Un temporisateur est déclenché au niveau du MTC-IWF qui reçoit le message DAR.

Figure 2. Call Flow d’un réveil de dispositif par SMS

L’entité MTC-IWF peut interdire ou autoriser la requête de réveil à partir de l’identité du serveur SCS si le serveur SCS n’est pas reconnu ou si le serveur SCS a dépassé le nombre de requêtes autorisées.

La durée de validité permettra à l’entité MTC-IWF de savoir si le dispositif sera joignable avant la fin du temporisateur. L’entité MTC-IWF aura besoin de connaitre la durée pendant laquelle le dispositif est soit à l’état dormant, soit en mode de veille avant la prochaine écoute de paging (Paging Occasion). Si le dispositif ne peut pas être réveillé pendant la durée de validité du message de réveil, alors l’entité MTC-IWF retourne un rapport d’erreur dans le message DAA.

L’entité MTC-IWF contacte l’entité HSS (éventuellement après une résolution HSS via la fonction de localisation SLF). A la réception de la requête DIAMETER SIR, l’entité HSS réalise les opérations suivantes :

  • Correspondance entre le numéro publique (MSISDN ou identité MTC externe) avec l’identité privée IMSI du dispositif ;
  • Récupère -si le dispositif est enregistré- le nœud de service actuel du dispositif (soit l’entité MME, l’entité SGSN, ou l’entité MSC) ;
  • Vérifie les droits de souscriptions du dispositif en correspondance avec l’identification du serveur SCS pour valider ou non la requête de réveil.

L’entité HSS répond à l’entité MTC-IWF par la requête SIA avec les éléments suivants :

  • Le nœud de service (MSC, SGSN, SGW) actuel du dispositif ;
  • Renvoie le statut du dispositif (UE State Information) permettant de savoir si le dispositif est à l’état connecté, de veille, ou non enregistré (absent). Cette information est apportée par le HSS ;
  • Le ou les mécanismes supportés par le dispositif (information apportée par le HSS) ;
  • Les capacités de services offertes par le réseau de l’opérateur Home (framework implémenté dans le MTC-IWF) et éventuellement par l’opérateur visité en cas de roaming ;
  • Autres informations transmises par le SCS (localisation du dispositif, demande de réveil groupé, …).

A partir des informations reçues, l’entité MTC-IWF sélectionne le mécanisme pour transmettre la requête de réveil au dispositif le plus efficace (SMS, Cell Broadcast, …) et génère un ticket de taxation.

L’entité MTC-IWF sélectionne la méthode SMS pour réveiller le dispositif. Il émet au serveur SMC-SC (SMS Service Center) la requête DTR.

Le message DTR contient :

  • le numéro IMSI du dispositif et éventuellement le MSISDN si le MTC-IWF le connait (si le SCS a donné l’identité MSISDN au MTC-IWF et non un identifiant MTC externe) ;
  • l’identité de l’entité SCS ;
  • l’identité du nœud de service (SGSN, MSC ou MME) si connu ;
  • le statut du dispositif ;
  • le numéro de référence de la demande de requête de réveil ;
  • la durée de validité du message de réveil ;
  • la Priorité du trigger ;
  • l’identification du port d’application du SMS.

Une fois le message DTR reçu, si le dispositif est joignable le centre de service SMS (SMS-SC) n’a pas besoin de contacter l’entité HSS. Il doit néanmoins :

  • vérifier l’identité du dispositif (IMSI ou MSISDN). Si l’UE n’est pas reconnu (DIAMETER_ERROR_USER_UNKNOWN) ;
  • vérifier l’identité du SCS. Si l’identité du SCS n’est pas reconnu (DIAMETER_ERROR_INVALID_SME_ADDRESS) ;
  • Router l’information vers le nœud de service (SGSN, MSC ou MME). Il renvoie alors l’information DIAMETER_SUCCESS à l’entité MTC-IWF.

Si le dispositif est non enregistré (absent), le centre SMS-SC va stocker le message et envoyer une notification à l’entité HSS (SM Message Delivery Status Report) afin que l’entité HSS rajoute l’adresse du centre SMS-SC dans la liste des messages d’attentes. Ainsi, lorsque le terminal MTC UE fera une demande d’attachement, il prendra connaissance du trigger.

Le centre SMS-SC renvoi le résultat de la demande DTR dans le message DTA. Le code de résultat AVP indique si la requête est acceptée (SUCCESS) ou refusée (FAILURE) avec le code d’erreur correspondant :

  • congestion du SMS-SC ;
  • adresse SME non valide ;
  • erreur de protocole SM.

A ce stade, l’entité MCT-IWF acquitte le message DAR par la réponse DAA, ce qui confirme que la demande de réveil a bien été transmise au SMS-SC.

Le message DAA contient :

  • le numéro de référence de la demande de requête de réveil ;
  • l’état du statut de la requête de réveil.

Si la requête est acceptée, le centre SMS-SC envoie le SMS vers le MTC UE et attend la notification de SMS. Cette notification est transférée du SMS-SC vers l’entité MTC-IWF dans le message DIAMETER DRR (Delivery Report Request) et l’entité MTC-IWF répondra au SMS-SC par la réponse DRA (Delivery Report Answer).

Le message DRR transmet le rapport de succès ou d’échec de transfert su Trigger par SMS, il contient les informations suivantes :

  • l’identité IMSI de l’UE et éventuellement le MSISDN ;
  • l’identité du SCS ;
  • le résultat de la requête :
  • Client Absent
  • Mémoire de l’UE remplie
  • Transfert réussi.

L’entité MTC IWF informe l’entité SCS de la réception du SMS de la part de l’UE. L’entité MTC-IWF envoie le message DIAMETER DNR (Device Notification Request) au serveur SCS et attend la réponse DNA (Device Notification Accept)

Le DNR contient les informations suivantes :

  • le MSISDN ou l’identité externe du dispositif ;
  • l’identité du SCS qui a fait la demande de réveil ;
  • le numéro de référence de la demande de requête de réveil ;
  • la réponse à la demande de réveil.

L’entité SCS acquitte la réception de cette requête en répondant par le message DIAMETER DNA.

Enfin, l’entité MTC-IWF répond à la requête DRR émis par le SMS-SC par la réponse DRA, informant ainsi le SMS-SC d’un succès ou d’une erreur sur l’interface T4.

Gestion de l’itinérance (Part 2) : la mobilité des UE

Part 2 : Gestion de la mobilité

II-1) – La signalisation


Le réseau GSM et 3G s’appuie sur l’architecture traditionnelle de la téléphonie commuté et exploite le protocole de signalisation SS7 (cf. http://mooc-ipad-formation.eu).
Ainsi, la gestion de la mobilité, la gestion de la localisation et de l’authentification étaient pris en charge par le protocole MAP (Mobile Application Part).

Ce protocole décrit les messages transmis entre les différents équipements du réseau de l’opérateur Home (HPLMN) et l’opérateur visité (VPLMN). Lors d’une première phase de migration vers l’IP, la signalisation SS7 initialement transportée sur des liens traditionnels TDM comme le E1/T1 est dorénavant encapsulée sur l’IP via le protocole SIGTRAN.

Mais, le réseau LTE n’utilise pas le protocole de signalisation SS7 : Diameter a été préféré et remplace le protocole MAP en supportant toutes ses fonctionnalités.

Le protocole DIAMETER a été adapté pour le LTE afin de gérer la gestion de mobilité des UE au sein du LTE mais le protocole doit également assurer l’interconnexion entre le LTE et les réseaux 2G/3G (DIAMETER to MAP). Pour échanger des données de signalisation, DIAMETER utilise des AVPs (Attribute Variable Pair) afin d’encapsuler les données en provenance d’applications reconnues.

Sur le tableau suivant, en guise d’exemple, nous donnons la traduction des messages MAP/DIAMETER.

diameter_map

II-2) L’architecture du réseau LTE

Pour comprendre la gestion de la mobilité sur le réseau LTE, il est nécessaire de revenir sur l’architecture du réseau en insistant (en rouge) sur la partie roaming (cf. article précédent).

LTE_roamingLes interfaces en rouges sont exploitées lors du roaming, nous allons les détailler pour plus de clarté :

  • Gestion de la mobilité :

L’interface S6a permet de transférer des données d’authentification et de localisation entre le MME et le HSS via Diameter afin d’autoriser ou non l’accès d’un utilisateur au réseau LTE.
En général, l’authentification est réalisée en respectant le protocole AAA lequel réalise trois fonctions : l’authentification, l’autorisation, et la traçabilité (en anglais : Authentication, Authorization, Accounting/Auditing)
L’interface S6d autorise les échanges d’informations relatives au protocole AAA entre le SGSN et HSS sur (over) DIAMETER.

  • Policy Control and Charging

L’interface S9 transfère la politique de contrôle de la QoS et les informations de taxation entre le HPCRF (Home Policy and Charging Rules Functionality) et le PCRF (Policy and Charging Rules Function) du V-PLMN toujours sur Diameter (cf. architecture SAE/LTE)
Le PCRF supervise les flux sur le réseau LTE : Il peut détecter les types de flux et de services (DPI : Deep packet Inspector) et met en relation la taxation adaptée (abonnement, calendrier) sur ce type de flux.

  • GTP Traffic

Le flux de données est transporté via un tunnel entre le SGW et le PGW sur l’interface S8. On retrouve le même fonctionnement en 2G et 3G, entre le SGSN et le GGSN.

II-3) Mise à jour de la localisation

Lorsqu’un utilisateur authentifié est en déplacement, le premier message reçu par le cœur de réseau est un message de Mise à Jour de la localisation (Location Update), quel que soit le protocole MAP ou DIAMETER utilisé.

Cependant, dans le cas

  • GSM MAP; le message ISD (Insert Subscriber Data) transporte le profil complet de l’abonné et si l’information complète ne peut être transmise dans un seul message ISD, le V_PLMN demande la transmission des informations complémentaires via d’autres messages ISD.

En 2G/3G, le protocole INAP/CAMEL est utilisé chaque fois qu’un utilisateur est en itinérance sur un autre réseau. LTE ne supporte pas le protocole CAMEL, il n’existe pas de traduction de message INAP vers le protocole DIAMETER

  • Pour DIAMETER, le LUA (Location Update Answer) transporte le profil de l’abonné. Ainsi, le DIAMETER ISD n’est utilisé que lorsque le H-PLMN demande un changement dans le profil de l’abonné.

Sur les figures ci-dessous, nous illustrons la partie Location Update via le protocole MAP (figure de gauche) et via le protocole Diameter (figure de droite)

Loc_Update_MAP_Diameter

II-4) Contrôle de la politique de QoS et facturation en temps réel

Dans le précédent article, nous avions vu deux techniques de routage de trafic, soit via le P-GW du réseau visité (Local Breakout) soit via le P-GW du réseau home (Home Routing).

Dans le premier cas, il est nécessaire de définir un accord pour échanger les informations de contrôle d’appel via l’interface Gy entre les deux PLMN. Ainsi, le PDN du V-PLMN peut interagir directement avec le système de tarification (charging system) du H-PLMN.

II-4.1) Home Routing

Basons-nous sur l’architecture du LTE, en focalisant notre attention sur les équipements impliqués lors du roaming. Sur la figure suivante, le V-PCRF communique avec le H-PCRF via l’interface S9 mais la facturation en temps réel (Real Time Charging) n’est pas transmise sur l’interface S9, mais via l’interface Gy selon le protocole DIAMETER RFC 3588.

Chaging_system_HPLMN

Concernant le roaming 2G/3G vers la 4G (on parle de roaming INTER-RAT), il faut savoir que le PCEF n’est pas pris en charge sur le réseau 2G/3G, ce qui pose un souci de QoS lors d’un roaming inter-RAT. En effet, dans le cas du réseau 2G ou 3G, le GGSN était dédié aux données et la QoS était spécifiée par la création d’un PDP context, la téléphonie était géré par le MSC, les SMS par le SMSC, et les services avancés par CAMEL.

II-4.2) Local Breakout

La procédure est légèrement différente, puisque c’est le PCEF du réseau visité qui transmet les informations de facturation en temps réel au H-PLMN. Les mêmes interfaces que précédemment sont utilisées.

Chaging_system_PLMNs

Gratuité de l’itinérance (Part 1): Bouygues dégaine en premier

Architecture du Roaming LTE

En début d’année, les opérateurs (Free, suivi de Bouygues puis Orange) avaient annoncé la gratuité du Roaming (itinérance) sur l’ensemble de l’Europe ou dans certains pays (Italie, Portugal pour Free), et/ou réservé à quelques abonnements. Ainsi, par exemple Bouygues avait annoncé le 22 janvier l’itinérance gratuite en Europe sur ses forfaits Sensation à partir du 24 février.

Nous allons montrer dans cet article comment la gratuité peut être effective sur le réseau 4G. Mais, comme l’objectif de toute entreprise, c’est de gagner de l’argent, nous aborderons donc dans cet article la partie facturation (billing) et le chargement d’information de tarification sur le type de service (charging).

Dans un premier temps, il faut revenir sur le concept de routage pour la LTE, le fonctionnement du LTE se diffère à ce niveau par rapport à la téléphonie 2G/3G. En effet, il existe deux méthodes de routage, le Home Routing et le Local breakout. A chaque méthode est associée des processus de tarification qui différent par conséquent par rapport à la 2G et 3G).

Nous allons donc naturellement commencer cet article par l’architecture de Roaming du LTE

I-1) Roaming LTE

Un réseau mobile déployé par un opérateur dans un pays se nomme PLMN (Public Land Mobile Network). Chaque utilisateur ayant souscrit à un opérateur utilise de préférence le réseau de cet opérateur, on parle de H-PLMN (Home PLMN). L’itinérance (roaming) permet à cet utilisateur de se déplacer en dehors du réseau de son opérateur et d’utiliser les ressources d’un autre opérateur (concurrent ou complémentaire). Cet opérateur est appelé V-PLMN (Visited PLMN).

Un utilisateur en itinérance est connecté à l’interface E-UTRAN, au MME et au S-GW du réseau LTE visité. Cependant le LTE/SAE permet de router les paquets vers un P-GW lequel appartient soit au réseau de l’opérateur visité (V-PLMN) soit à celui de son propre opérateur (H-PLMN), comme le montre la figure ci-dessous.

roaming

L’avantage du Home Routing est la capacité d’accéder aux services souscrits chez son opérateur (H-PLMN) même si le client (abonné) est sur un réseau visité. Le P-GW dans le réseau visité permet à l’abonné un accès local (Local Breakout) au réseau Internet via le réseau de l’opérateur visité.

L’interface entre le S-GW (Serving Gateway) et la passerelle P-GW permettant d’accéder au réseau de données (PDN : Packet Data Networks) est nommée S5 dans le cas du Local Breakout ou S8 pour le Home Routing.

I-2) LTE roaming Charging

La complexité des nouveaux modèles de taxations pour supporter l’itinérance en 4G sont plus nombreux que pour la 3G

  • Les cartes Pré-payées. Le standard CAMEL, qui permet l’accès par pré-payement aux services 3G n’est pas compatible avec la 4G. Ains, les accès au réseau PDN par des utilsateurs de cartes pré-payées doivent être obligatoirement routées vers le H-PLMN et ne peuvent donc pas être routés via le V-PLMN. Les opérateurs doivent donc mettre en place un flux de taxation spécialement dédié au clients de carte prépayé afin que ces derniers puissent accéder au PDN via leur P-GW
  • Les forfaits : La facturation s’appuie sur les mêmes tickets que le 3G.

Dans le cas de Local breakout, les opérateurs n’ont pas la même visibilité sur les activités des abonnés puisque la connexion de l’abonnée est gérée par le V-PLMN. Cependant, afin que l’opérateur Home puisse avoir des informations en temps réels (nécessaire entre autre pour les forfaits bloqués), il doit établir une interface DIAMETER entre son système de facturation et le P-GW du réseau visité.

Dans le cas d’un Local Breakout sur des services IMS, le réseau visité crée un CDR (Call Detail Records ) en provenance du S-GWS-Gateway(s). Cependant le CDR ne contient pas toutes les informations requises pour créer un TAP selon la version 3.12 pour le service utilisé (évènement ou session). En conséquence de quoi, les opérateurs doivent corréler les CDRs émis par leur proper réseau avec le CDR crée par l’IMS pour constituer un enregistrement TAP.

I-3) TAP 3.12

TAP : Transferred Account Procedure est le mécanisme permettant aux opérateurs d’échanger des informations de facturations des clients en roaming. TAP 3.12 correspond à la version 12 et la release 3, laquelle décrit la syntaxe des fichiers TAP transmis entre les opérateurs depuis le 1er mai 2013.

tap

Le TAP est transmis au HPLMN au plus tard 36 heures après la fin de la session.