Internet des Objets

L’Internet Des Objets

Selon l’étude de marché menée par Statista en 2018 [1], plus de 75 milliards d’objets seront connectés à Internet en 2025, soit deux fois plus qu’en 2021 (35 milliards d’objets connectés).

Un grand nombre d’objets seront connectés via un réseau bas débit et faible coût, comme LoRaWAN, SIGFOX, ou à travers les réseaux cellulaires (LTE-M/NB-IoT).

En 2009, Christophe Fortet et Ludovic Le Moan ont créé la société SIGFOX pour le marché M2M.

Dans le secteur des objets connectés, SIGFOX est le premier à s’être positionné comme Opérateur IoT en déployant son propre réseau sur plusieurs continents (déploiement de l’accès radio-électrique et du cœur de réseau).

A la même année (2009) Nicolas Sornin et Olivier Seller travaillaient sur un module de transmission longue portée pour des télé-relevées (comptage eau-électricité). L’entreprise Cycleo fut rachetée par SEMTECH en 2012. Les puces SX1272 et SX1276 pour les modules LoRa et SX1301 pour la passerelle ont été produites en 2012.

En 2015, LoRaWAN est une alliance entre opérateurs (Orange, Bouygues …), équipementiers (SEMTECH, ST, …),  des sociétés qui déploient des solutions de connectivités (modules radio, cœur de réseau comme Actility, Sagemcom, Birdz, Cisco).

LTE-M et NB-IoT s’appuient sur les réseaux de mobiles 4G/5G permettant ainsi d’apporter rapidement une connectivité mondiale.

Les premiers marchés nécessitant des solutions de connectivités longue portée, faible cout et consommant peu d’énergie (LPWAN : Low Power WAN) ont été la collecte de données pour la gestion d’eau et d’Energie. A ce titre, VEOLIA a racheté l’activité Energie de la start-up Actility, complétant ainsi son activité de télé-relevé (Smart-City et environnement urbain) qu’elle réalise avec la société Birdz (exemple pour la gestion des déchets).

En 2020, l’IoT s’est positionné sur le marché de suivi de marchandise (tracker) afin d’améliorer les process logistique et afin de réduire la durée d’approvisionnement.

Ainsi, dans le cadre du suivi de la préservation des vaccins Covid réalisé par Pfizer et Moderna, nécessitant une congelation à -70°C pour Pfizer et -20°C pour Moderna, les laboratoires ont mis en place une procédure de suivi des vaccins pour suivre l’acheminement (GPS/NFC) avec un suivi de la température. Les solutions LoRaWAN et 5G ont été écartées (difficulté de roaming) pour retenir la solution NB-IoT.

L’Internet des Objets Industriel (IIoT), qui est la base de l’Industrie 4.0 (Smart Factory) fournit également une connectivité pour les usines intelligentes, aux machines, aux systèmes de gestion, et à la logistique/approvisionnement.

Ce blog étant consacré aux réseaux cellulaires, je n’aborderai que les solutions portées par les réseaux cellulaires. Néanmoins, pour ceux(celles) qui sont intéressé(e)s par le fonctionnement de LoRa et LoRaWAN, contactez moi

[1] https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

Les bandes de fréquences 5G : choix stratégique des opérateurs.

Les opérateurs proposent la 5G sur la bande de 3,5 GHz et sur la bande 2,1 GHz.

A partir de 2022, la bande de 26 GHz devrait également être utilisée.

La bande 3,5 GHz est déployée pour répondre à la croissance du trafic de données (ARPU 50 % par an) ce qui à terme va générer des congestions au niveau des stations de base dans les zones urbaines denses. Les opérateurs interrogés évoquent un manque de ressources attendu vers 2022 en France, avec un risque de baisse de la qualité de service pour l’utilisateur.

La bande de 2,1 GHz permet d’avoir une meilleure couverture par rapport à la bande de 3,5 GHz.

La bande 26 GHz, caractérisée par une faible propagation et une mauvaise pénétration à l’intérieur des locaux, sera déployée dans un second temps pour couvrir des zones limitées à fort trafic (hot spot)
probablement majoritairement pour les entreprises (usines 4.0, …) et marginalement pour le grand public (par exemple stades ou terminaux de transport).

Carte de déploiement de la 5G 

SFR est le premier opérateur à avoir commercialisé son réseau 5G avec plus de 120 communes couvertes dont la liste est communiquée par communiqué de presse.

La couverture de SFR en temps réel est affiché sur son site.

Le 3 décembre 2020, Orange a lancé son réseau 5G dans une quinzaine d’agglomérations regroupant plus de 160 communes. La liste des villes est accessible sur le lien d’Orange.

Le 10 décembre 2020, Bouygues Telecom annonçait plus de 1000 communes couvertes dont 67 villes de plus de 50 000 habitants. L’opérateur propose une carte du déploiement de la 5G sur son site.

Quant à Free, le lancement est prévu pour le 15 décembre et propose d’ouvrir plus de 12000 sites en 5G, soit deux fois plus que les autres opérateurs.

Le choix des fréquences des opérateurs  

Les bandes de fréquences acquises par les opérateurs sont présentées dans l‘article précédent.

Free dispose de 12000 site dans la bande de la 5G. Free s’appuie donc sur les sites actuellement 4G pour partager le spectre entre 4G et 5G. Cela signifie donc que la couverture 5G de Free sera la plus importante, mais les débits seront identiques à ceux de la 4G.

On trouve parfois le terme de fausse 5G lorsque l’opérateur utilise les bandes de la 4G pour faire de la 5G (700 MHz, 800 MHz, 900 MHz, 1,8 GHz, 2,1 GHz, 2,6 GHz).

Les attributions sont neutres technologiquement cela veut dire que Les bandes de fréquences déjà utilisées par les réseaux mobiles ouverts au public pourraient aussi être utilisées pour l’introduction de la 5G puisque ces bandes de fréquences ont été définies par les instances de standardisation et que les autorisations d’utilisation de fréquences délivrées sont donc neutres technologiquement.

Les autres opérateurs ont déployés des sites à 3,5 GHz et proposent de la vraie 5G. On dénombre plus de 1000 sites 5G à 3,5 GHz

Néanmoins SFR et Bouygues ont de plus commencé à utiliser la bande de 2.1 GHz car celle-ci offre un bon compromis entre couverture et débit. Il faut savoir que SFR et Bouygues ont également un accord de RAN Sharing (Le partage de réseau d’accès radioélectrique : accord CROZON). Au 1er décembre SFR et Bouygues ont l’autorisation d’activer la 5G sur plus de 5000 sites.

Le partage de la bande 4G et 5G est réalisé de manière dynamique par la station de base via la technique DSS (Dynamic Spectrum Sharing).

La 5G NSA s’appuie sur une station de base 4G couplée avec une station de base 5G. La 4G est la station de base maitresse. Les opérateurs ont choisi la bande à 700 MHz pour les sites 4G/5G. La bande de 700 MHz peut également être utilisée pour partager l’interface 4G/5G.

Dans le principe, la bande à 3,5 GHz est utilisée comme la bande 5G pour le trafic bidirectionnel et la bande de 700 MHz ou 2100 MHz est utilisée comme un lien Uplink (SUL : Supplementary UpLink).

Dans les faits, la bande à 3,5 GHz ou 700 MHz peut être utilisée comme noeud secondaire.

Ainsi la carte de déploiement est la suivante (cf site ANFR) :

Entre les différents opérateurs :

Sur les bandes de fréquences 5G

L’allocation de bande 5G à 3.5 GHz

Le 12 novembre 2020, l’ARCEP a attribué les bandes de fréquences 3.5 GHz aux différents opérateurs (figure 1).

Figure 1 : La répartition des fréquences 5G

Une seule bande est représentée car la bande de fréquence 5G à 3.5 GHz utilise une méthode de duplexage en temps (TDD).

La méthode de duplexage TDD a deux principaux avantages :

  1. améliorer la gestion des faisceaux par rapport à la méthode FDD. Le fonctionnement Massive-MIMO permettant de s’appuyer sur les estimations du canal en réception pour mettre en oeuvre un codage analogique au niveau des antennes de transmission dans le but d’orienter le faisceau dans une direction donnée (se référer à l’article Massive MIMO : Fonctionnement (Troisième Article) avec des algorithmes comme MMUSIC ou ESPRIT.
  2. augmenter le débit descendant au dépend du débit montant en proposant plus d’allocation temporelle pour le sens descendant par rapport au sens montant. Dans le cas de la 5G, le rapport est de  4 slots pour le sens descendant contre un slot pour le sens montant.

La répartition des slots proposée par l’ARCEP suit la recommandation ECC 20(03), adoptée en octobre 2020. Cette recommandation limite le nombre de trames 5G aux deux formats suivants :

  • DDDSUUDDDD / DDDDDDDSUU+3ms
  • DDDSU

D pour Downlink, U pour Uplink, S est une sous-trame spéciale permettant la commutation du sens de transmission D vers U.

Le premier choix présente l’avantage d’une compatibilité avec la structure de trame LTE utilisée par les réseaux français.

Le deuxième choix n’est pas  compatible avec le LTE.

Ces deux trames, incompatibles entre elles, vont nécessiter de nouvelles fonctionnalités pour éviter les brouillages aux frontières comme le « DL Blanking ».

Figure 2 : Les modes de duplexage en Europe

La solution « DL symbol blanking » consiste à neutraliser les intervalles de temps (sous-trames) d’émission des stations (« D ») lorsque ces sous-trames sont simultanés avec les créneaux de réception (« U ») du réseau voisin. Il faut pour cela que les opérateurs partagent la même horloge (UTC +/- 1.5µs) et alignent chaque début de trame.

La figure ci-dessous illustre cette solution pour les deux trames retenues pour l’instant. Les trames originelles sont tout en haut et tout en bas de la figure. Dans les trames adaptées, au centre de la figure, les émissions « D » sont supprimées (en rouge) lorsqu’elles coïncident avec la réception « U » dans le pays voisin.

Figure 3 : La gestion des interférences entre pays

Si la bande 3,5 GHz est définie comme la vrai 5G, les opérateurs peuvent également utiliser la bande de 2,1 GHz. Celle-ci ne dispose cependant pas d’une largeur de bande suffisante pour apporter les mêmes débit que la 5G. Toutefois, la couverture et la pénétration indoor est meilleure par rapport à la bande de 3.5 GHz.

 

MOOC 5G est ouvert depuis une semaine

MOOC 5G : A ne pas rater.

Xavier Lagrange, professeur d’Université à l’institut Télécom Paristech propose une formation 5G à travers la plateforme université numérique francophone FUN MOOC.

Au cours de la première semaine, M Lagrange et son équipe pédagogique (dont Nicolas Dailly) ont présenté l’intérêt de déployer la 5G.

Dans les semaines à venir, ils présenteront entre autre l’évolution CUPS, l’établissement de sessions PDU, les états du mobile (RRC_IDLE, RRC_CONNECTED et RRC_INACTIVE), …

La formation est très intéressante (il existe aussi une formation sur la 4G) et l’approche très didactique et pédagogique.

Si vous ne vous êtes pas encore inscrit, cliquez sur le lien suivant :

https://www.fun-mooc.fr/courses/course-v1:MinesTelecom+04035+session01/about

Et bonne formation.

Les terminaux 5G

Les opérateurs ont déposé leur demande auprès de l’ARCEP pour obtenir une bande de 50 MHz afin de déployer la 5G.

Cette bande autour de 3,4 GHz va permettre à l’opérateur de délivrer de la 5G par le mécanisme de double connectivité. Il s’agit de la 5G-NSA (Non StandAlone) déjà déployé par d’autres opérateurs dans plusieurs pays du monde.

Les enchères pour l’attribution des bandes 5G (jusqu’à 100 MHz de bandes) a été retardée à une date ultérieure, probablement début mai ce qui risque de retarder le lancement commercial de la 5G en France (initialement prévue en Juillet 2020).

Les équipementiers 5G (Qualcomm, Samsung, Huawei) fournissent déjà des terminaux 5G, dans cet article je présente les constructeurs de modem 5G et les terminaux qui sont vendus dans le monde et qui seront vendus en France.

La plupart des terminaux sont 5G NSA, il existe néanmoins des terminaux dual-mode (5G-NSA et 5G SA).

Les résultats sont montrés sous forme synthétiques de tableau, cette étude a été réalisée fin février 2020

I) Les équipementiers

II) Les téléphones

Les terminaux 5G dans le monde sont résumés dans le tableau suivante, avec en couleur les terminaux qui seront commercialisés en France (Selon la liste du 29/02/2020) à savoir

  • Huawei Mate 20 et Mate 30
  • Xiaomi Mi Mix 3
  • Samsung S10 et S20
  • ViVO Z6

 

Double Connectivité (DC – Dual Connectivity) 4G/5G

La 5G arrivera en Juillet 2020, le déploiement sera un déploiement au niveau de la couche radio. Comment la 5G sera déployée? Quels services va t’elle apporter? Quelles performances? Comment la station de base 5G (gNB) sera controlée? Peut on parler de 5G si le coeur réseau est 4G?

Ces réponses seront apportées dans une série d’articles, et voici le premier article d’une longue série sur la double connectivité.

Introduction

La double connectivité implique la présence de deux stations de base pour apporter des ressources radio-électrique vers un terminal mais un seul point de terminaison de signalisation vers le coeur réseau. Dans une première phase, le coeur de réseau est le coeur de réseau 4G (EPC), le point de terminaison est donc l’interface S1-MME.

La double connexion implique soit deux stations de bases LTE (se référer à l’article suivant) soit une station de base NR et une station de base LTE (Multi-Radio DC – MR-DC aussi nommé NR-DC).

Chaque nœud radio contient plusieurs cellules (une cellule pour une antenne omni-directionnelle, trois cellules, 6 cellules pour des antennes multi-sectorielles, …), et chaque nœud gère plusieurs porteuses LTE ou NR (agrégation de porteuses).

La double connexion implique donc la gestion de groupe de cellules (GC : Group Cell) pour chaque nœud radio. L’objectif d’un groupe de cellules est de gérer les données sur une ou plusieurs porteuses pour augmenter le débit. Dans un groupe de cellules (GC), on identifie la cellule principale (SpCell) qui est en charge de contrôler toutes les cellules du groupe et optionnellement une ou plusieurs cellules secondaires (SCell).

La double connectivité définie la notion de support MCG (Master Cell Group) et SCG (Secondary Cell Group bearer). Le support MCG est géré par la station de base maitresse, le support SCG correspond aux supports de la station de base secondaire. La double connexion permet de modifier la terminaison du plan de transport (U-plane termination) vers le support MCG ou SCG via la signalisation S1-MME sans modifier le point de terminaison du nœud de contrôle S1-MME (la signalisation est toujours définie entre le cœur de réseau et la station de base maîtresse).

Ainsi, si on appelle MCG le groupe de cellule maître et SCG le groupe de cellules secondaires, le MSG et le SCG peuvent avoit un SpCELL et des SCELL.

La fonctionnalité Double Connectivité (Dual Connectivity DC) a initialement été spécifiée sur le réseau de mobiles 4G entre deux stations de bases eNB différentes (sur des porteuses différentes) avec l’objectif d’augmenter le débit ressenti par l’utilisateur en agrégeant des flux des deux eNB en dépit de la latence provoquée par le lien X2 (backhaul). Cela constitue une différence avec l’agrégation de porteuses ou l’agrégation des flux est réalisée sur la même station de base dans deux bandes radios différentes. Dans le cas de la double connexion, les stations de base n’ont pas besoin d’être synchronisées (et peuvent donc être non co-localisées).

Figure 1 : Agrégation de porteuses et Double Connexion

L’interface X2 est une interface physique, généralement en Fibre Optique. L’interface X2 peut être séparée en deux interfaces, l’interface X2-U pour l’échange de données du plan utilisateur entre la station de base maîtresse et secondaire (handover, double connexion), et l’interface X2-C permettant l’échange des informations de contrôle entre les deux stations de base.

La pile protocolaire pour le plan de transport sur l’interface X2-U utilise les couches protocolaires GTP-U, UDP, IP et la couche de niveau 2

  1. La double connectivité DC 4G-4G (se référer à l’article DC 4G/4G)

L’option DC 4G-4G a déjà été présentée dans un article précédent, on différencie le plan de contrôle et le plan de trafic. L’une des deux stations de base est responsable de la signalisation avec le cœur réseau et le terminal. Les supports (nommés bearer) de signalisation correspondent aux bearer SRB1 et SRB2 entre le terminal Ue et la station de base maîtresse (MeNB). La station de base secondaire est responsable de la connexion de données additionnelles sur le lien radio (DRB) et vers le cœur réseau.

Plan de contrôle :  La station de base maîtresse (MeNB) établie la connexion RRC avec le terminal UE et la connexion radio avec l’entité SeNB (Secondary eNB) est contrôlée par la station de base maîtresse.

Plan utilisateur : Deux options sont supportées pour la DC 4G-4G :

  • Option 1A : Le cœur de réseau établit deux supports (bearer) avec chacun des entités eNB ;
  • Option 3C : Le support est séparé par l’entité MeNB : Split Bearer

Figure 2 : Pile protocolaire DC 4G-4G

Le terminal UE ne dispose que d’une seule entité RRC.

Dans le cas de la double connexion 4G-4G, les deux options retenues parmi toutes les options possibles sont l’architecture 1A et 3C.

Pour l’option 1A, la séparation des flux est gérée au niveau du cœur réseau (SGW).

Pour l’option 3C, la séparation des données est basée sur le routage de support de données PDCP.

Figure 3 : Double Connexion 4G-4G

  1. DC 4G-5G : Déploiement NSA

Le mode de déploiement de la 5G s’appuiera en 2020 sur une double connectivité 4G-5G (mode NSA – Non Standalone Architecture). L’opérateur conserve le cœur de réseau 4G (EPC), la signalisation entre l’accès radio et le cœur de réseau est réalisée par l’entité eNB. On parle d’option 3

Remarque : si le cœur de réseau était 5G on parlerait alors d’option 7, tout chose égale par ailleurs.

Pour l’option 3, le terminal UE est sous le contrôle de la station de base 4G et lors de la demande de connexion radio avec la station de base eNB (LTE PCell), le terminal va être configuré pour monter un support radio NR avec la station de base gNB (dénommée en-gNb : E-UTRAN – NR gNB pour rappeler le mode DC).

Plan de contrôle : Sur l’interface radio, le terminal UE est contrôlé par l’entité eNB et en-gNB (par des messages RRC). La signalisation (CP : Control Plane) est échangée entre les deux stations de base via le lien backhaul X2.

L’application X2AP réalise plusieurs fonctions comme le rappelle la figure 4 :

Figure 4 : les fonctions supportées par l’application X2AP

Plan Utilisateur : Le terminal UE peut être connecté simultanément sur l’entité eNB et en-gNB pour le plan utilisateur ou uniquement avec l’entité en-gNB.

La fonction DC 4G-5G option 3 se décline en trois sous options (figure 4) en séparant le support au niveau de l’accès radio (split bearer) ou en créant un support au niveau du cœur de réseau (MCG ou SCG) :

  • option 3 : La séparation du support (split bearer) est réalisée par l’entité MeNB. Le trafic (UP : User Plane) est transmis à travers le lien X2 vers l’entité SgNB (Slave en-gNB) ;
  • option 3a : La création d’un bearer secondaire (SGC) s’effectue au niveau du cœur réseau (SGW) et le flux de données est transmis sur deux supports (bearer) complémentaires, l’un vers l’entité MeNB, l’autre vers l’entité SgNB ;
  • option 3x : La création d’un bearer est réalisée au niveau du cœur radio (SCG) et la séparation du bearer est réalisée par la station de base secondaire (SCG split bearer).

Figure 5 : Les options 3/7 vert à gauche, 3a/7a (en bleu), 3x/7x vert à droite du mode NSA

L’option 3x consiste à séparer le support DC au niveau de la station de base gNB. L’entité eNB peut conserver un ou plusieurs bearer avec le cœur de réseau (MCG bearer) ou ne gérer que la signalisation entre l’accès radio (eNB/en-gNb) et le cœur de réseau.

Dans le cas du split-bearer, les données sont distribuées ou dupliquées entre les deux nœuds radios. L’équilibrage de charge est réalisé de manière dynamique par le nœud d’ancrage (MeNB ou SgNB) en fonction du trafic, c’est-à-dire par l’entité PDCP du nœud d’ancrage (MeNB pour l’option 3 et SgNB pour l’option 3x).

Dans la suite, on appellera indifférent SgNb ou en-gNB.

Architecture du réseau M2M

Cet article est la suite des deux précédents :

  1. http://blogs.univ-poitiers.fr/f-launay/2019/02/15/iot-blockchain-ia-machine-learning-des-technologies-disruptives/
  2. http://blogs.univ-poitiers.fr/f-launay/2019/03/18/iot-bigdata-ia-un-monde-100-connecte-pour-les-systemes-cyber-physique-cps/
  • Architecture du réseau M2M

L’architecture générique du réseau M2M a été spécifiée par l’institut ETSI qui a défini les fonctions de bases pour pouvoir échanger des données entre un objet et un serveur. Cette architecture s’appuie sur un ensemble de fonctionnalités logicielles déployées dans un framework.

Le but du framework est de décrire les services qui permettent de gérer l’objet : enregistrement, authentification, récupération des données de manière périodique ou par une méthode de réveil, accessibilité de l’objet, localisation, type de réseau supporté, … Les applications sont réunies dans une bibliothèque logicielle générique prenant en charge l’objet quel que soit le réseau de connectivité, auxquelles se rajoutent des applications spécifiques permettant de gérer les caractéristiques de chaque réseau de connectivité. On parle de Capacité du réseau (ou service capabilities), les fonctionnalités proposées par le réseau d’accès et gérées par le framework.

L’architecture du réseau M2M se décompose en trois parties :

  • Le domaine d’application ;
  • Le domaine des réseaux ;
  • Le domaine des dispositifs ;

Figure 1. L’architecture fonctionnelle du M2M

Le domaine des dispositifs est composé des éléments suivants :

Le domaine des réseaux gère la connectivité de l’objet. Cela suppose l’enregistrement de l’objet, la gestion du plan de transport (établissement d’un tunnel pour la Data),  la gestion de la mobilité, la gestion de la qualité de service et la facturation. Le domaine des réseaux se découpent en trois parties :

  • Réseau d’accès : Il s’agit d’une connexion soit en tout IP via un support en cuivre, un support optique, un lien cellulaire (GPRS, 4G, WiMax), lien satellitaire ou d’une connexion non IP via le réseau GSM ;
  • Cœur réseau : Il fournit les fonctions comme la connectivité (IP ou SMS), les fonctions de contrôle du réseau (qualité de service) et l’autorisation du service demandé ;
  • Les capacités de Service (M2M Service Capabilities). Il fournit les fonctions M2M qui sont offertes aux serveurs d’applications client via des interfaces ouvertes (API) en s’appuyant sur les fonctionnalités du cœur réseau à travers les interfaces normalisées (Gx,Gi) ;

Le domaine d’application est composé :

  • D’un serveur d’application client (AS)
  • D’un portail client qui fournit des fonctionnalités au client.

La première fonctionnalité du portail client consiste à inscrire l’objet  via une interface https. L’étape de provisioning consiste à enregistrer le n-uplet identifiant(s) dispositif(s), clé(s) privée(s) et identifiant(s) applicatif(s)  dans le cœur réseau de l’opérateur. Cette étape est partiellement réalisée par l’opérateur pour le réseau cellulaire et entièrement réalisée par le client dans le cas du réseau LoRa.

Les autres fonctionnalités sont proposées au client par une interface API permettant au client d’accéder à un serveur de données dont le rôle est de stocker les informations fournies par l’objet ou par le réseau. En général le client se connecte via le protocole http (API REST), ou un protocole plus léger comme le protocole MQTT, XAP, XMPP ou COAP. La demande d’accès est contrôlée par un jeton d’authentification (Token) transmis au moment de la requête http. Le client doit donc activer un compte auprès de l’opérateur (lors de la première étape) pour utiliser une ou plusieurs API. Chaque API est associée à un jeton (comme par exemple, l’identifiant APPEUI pour LoRa).

Au niveau du portail client, l’opérateur dispose en plus :

  • d’outils de supervision du réseau et des sauvegardes de logs ;
  • des bases de données contenant les informations de souscriptions de chaque client : identité et clé privée de chaque objet pouvant s’enregistrer sur le réseau ainsi que les règles à appliquer pour chaque objet et les droits (les jetons d’authentification) ;
  • d’un serveur de facturation et de gestion de la politique des droits;

IoT, Blockchain, IA, machine learning : Des technologies disruptives?

Les évolutions technologiques récentes vont apporter des changements profonds dans les domaines de la santé, de la logistique, le transport, l’énergie, l’agriculture, …

Si le déploiement de l’IoT (Internet of Things) destiné à collecter un ensemble d’informations constitue la première brique de cette évolution, la plus-value de cette transversalité numérique ne peut être obtenue qu’en garantissant la sécurisation des données collectées et le traitement efficace de ces données.

En cela, la technologie Blockchain s’insère dans l’écosystème de l’IoT en apportant un stockage des données, en assurant le transport sécurisé des données échangées et en permettant la traçabilité des données.

Quant aux traitements des données, l’intelligence artificielle (IA) permet de les valoriser et de les traduire en informations exploitables facilitant ainsi l’analyse décisionnelle des systèmes complexes. De surcroît, les méthodes d’apprentissages autonomes (Machine Learning) permettent également de classifier les données et d’apporter des outils de prédictions des pannes.

Les applications IA pourraient être mise en œuvre sur des lames de serveurs au plus proches des données collectées (MEC : Mobile Edge Computing).

Ainsi, les secteurs de la santé (capteurs et IA pour détecter l’évolution des maladies), du transport (véhicules autonomes), des chaînes d’approvisionnement (réparation des chaînes de production avant la cassure des pièces usées, l’approvisionnement en flux tendus), de l’énergie (délestages des sites industriels en assurant un transport de l’énergie au plus proche) seront impactés par la complémentarité de ces technologies disruptives.

Dans ces écosystèmes de plus en plus complexes, la donnée reste l’élément fondamental et le premier maillon d’une nouvelle ère économique. Les cabinets d’analystes estiment une évolution constante du marché des capteurs de l’IoT pour atteindre une centaine de milliards de dollars d’ici 2023 et une croissance du taux actuariel (CAGR – Compound annual growth rate) de 13%.

SigFox est le premier opérateur à s’être positionné sur le marché de la transmission sans fil des données issues des capteurs en déployant le réseau de transmission longue portée à basse consommation (LPWAN : LoW Power WAN).  Ce réseau LPWAN répond à la demande des compteurs intelligents (smart-meters, compteur d’eau, compteur de gaz), à la gestion des villes (smart-city) pour lesquels la communication est à latence élevée.

Aujourd’hui, l’opérateur Télécom SigFox est concurrencé par l’opérateur QoWiSio, l’opérateur Américain Ingénu, et l’alliance LoRaWAN avec le déploiement de LoRa par les opérateurs télécoms historiques.

Le réseau cellulaire 4G se positionne également sur ce secteur en étendant ses fonctionnalités pour répondre à l’émergence du marché de l’Internet des Objets. Ce réseau dédié aux communications Machine à Machine (MTC – Machine Type Communication) est destiné à devenir le premier réseau cellulaire LPWAN (Low Power WAN). Le premier avantage est de pouvoir rapidement apporter une couverture mondiale avec optionnellement une qualité de service.

L’IoT cellulaire (par son réseau d’accès NB-IoT, LTE-M et prochainement 5G NR) devrait connaître la plus forte croissance avec en point de mire, entre 10 000 et 100 000 objets connectés sous la couverture d’une seule station de base. Orange a ouvert son réseau LTE-M en novembre 2018, comme annoncé dans un précédent article traitant du cellular IoT.

Le réseau 5G quant à lui va permettre d’apporter de nouvelles solutions pour les communications M2M à temps réel (missions critiques URLLC : Ultra Reliable Low Latency Communication) pour répondre au besoin du secteur de l’automobile et de l’industrie (IIoT – Industrial IoT).

Le laboratoire LIAS s’intéresse à ces différentes technologies notamment comme application visée (de manière non exhaustive) le smart-grid, le secteur du transport,…

Dans les prochains articles je reviendrai plus particulièrement sur le MTC (réseau 4G).

Il est à rappeler que ces métiers s’adressent aux femmes et aux hommes, je vous invite à consulter le site femmes-numérique.fr

Blockchain, intelligence artificielle, big data, cyber sécurité, objets connectés, cloud…

 

L’initiative

 

LTE Gigabit

Entre la Release 8 qui normalise le LTE et la Release 15 qui a va standardiser le réseau 5G, le réseau LTE a connu trois phases d’évolution importante :

  • LTE – R8/R.9
  • LTE-Advanced aussi nommé la 4.5G : R10 à R12.
  • LTE-Advanced Pro ou 4.9 G : R13/R14.

Réseau opérateur : Accès radio

L’évolution du cœur radio du LTE-Advanced permet d’atteindre des performances allant à 1 Gb/s sur le lien radio. On retrouve ainsi cette norme sous le nom commercial LTE Gigabit. Le premier déploiement du LTE Gigabit a été lancé par Telstra en février 2017 avec Qualcomm et Ericsson mais Monaco a également déployé ce réseau.

Pour comprendre les performances atteintes, revenons sur le principe radio du LTE :

  • Bande spectrale : 20 MHz
  • Modulation DL : QPSK, 16 QAM, 64 QAM et 256 QAM
  • MIMO : Pas de MIMO, MIMO 2×2, MIMO 4×4.
  • Agrégation de porteuse (CA).

Dans un précédent article, nous avions estimé le débit total LTE à 100 Mbps sans MIMO et avec une modulation 64 QAM. L’estimation était biaisée car le trafic estimé prenait en compte à la fois les signaux de références et les canaux de contrôle PDCCH, ainsi que les canaux de synchronisation et de broadcast (PSS, SSS, BCCH). Prenant en compte que le PDSCH, le débit utile maximal était de 75 Mbps.

L’évolution de la modulation de 64 QAM à 256 QAM permet de transmettre 8 bits par symbole (256 QAM) au lieu de 6 bits par symbole (64 QAM), améliorant d’un rapport 4/3 le débit.

L’utilisation de 4 antennes en émission et en réception permet la transmission simultanée de 4 flux de données, soit une augmentation de débit 4 fois supérieure.

Au total, on arrive donc à un débit maximum de 400 Mbps.

L’agrégation de porteuses permet à l’opérateur de proposer plusieurs bandes LTE pour un seul UE. Le LTE a terme proposera, pour un seul UE, jusqu’à 5 bandes LTE. L’opérateur dispose de plusieurs bandes LTE. En France, les opérateurs disposent de bande de 10 MHz, 15 MHz ou 20 MHz sur les fréquences de 800 MHz, 2600 MHz et 1800 MHz. Prochainement, les opérateurs utiliseront les bandes de 700 MHz.

Avec 20 MHz de bande, le 4×4 MIMO et une modulation de 256 QAM, le débit utilisateur maximal est de 400 Mbps. Ainsi, avec 30 MHz de bandes supplémentaires sur 3 porteuses différences, les opérateurs en France pourront proposer du Gigabit LTE.

Pour résumer, l’opérateur doit disposer d’un minimum de 50 MHz de bande pour pouvoir commercialiser du Gigabit LTE sur 3 porteuses différentes.

Les terminaux : Catégorie de UE

Les terminaux doivent aussi supporter de telles fonctionnalités. La 3GPP a défini différentes catégories de terminaux, et seuls les terminaux de catégorie 16 vendus actuellement supportent de telles performances. Le premier terminal est le Samsung S8 avec la puce Exynos 8895.

A ce jour, on liste :

  • HTC U11
  • LG V30
  • Sony Xperia XZ1
  • Iphone X

L’IPhone 8 n’utilise pour l’instant que du MIMO 2×2, mais les prochains terminaux vendus en 2018 devraient (?) profiter de nouvelles puces pour exploiter le MIMO 4×4.

Que doit on attendre d’ici la fin de l’année? Plus de Débit et la VoLTE.

De la 4G à la 4G++

De manière évidente, la première réponse est : Plus de débit!

En effet, après l’annonce de la 4G permettant d’atteindre des débits inégalés par rapport au réseau 3G/3G+ et H+, après l’annonce de la 4G+ permettant de doubler voir tripler le débit par rapport à la 4G, les opérateurs vont maintenant dégainer leur 4G++.

Mais quelle réalité derrière ces noms commerciaux?

Revenons un moment sur la norme, les évolutions proposées et normalisées sont l’évolution du LTE au LTE-Advanced. Cette dernière norme, une fois déployée, permettra d’atteindre un débit allant jusqu’à 3 Gbps par l’agrégation de 5 porteuses de 20 MHz avec un terminal de catégorie 8.

Pour les opérateurs, la dénomination du réseau est différente :

  • La 4G exploite une seule bande de fréquence
  • La 4G+ permet l’agrégation de deux bandes de fréquences
  • La 4G++ permet l’agrégation de trois bande de fréquences.

A ce stade, le LTE-Advanced sur 5 bandes devrait se nommer 4G++++ ou 4G puissance 5?

Mais en terme de débit?

La subtilité arrive quand on compare maintenant les offres des opérateurs. En effet, pour simplifier on considère à cette date que 5 MHz de bande permet d’obtenir un débit de 37,5 Mbps sur le lien descendant (attention, cela ne sera plus le cas pour les terminaux de catégories 11).

En terme de débit, voici la liste des terminaux de catégorie 1 à 14.

LTEUECategoriesMay2015

L’agrégation de porteuses permet d’atteindre des débits plus élevé. Mais de par la faible disponibilité de bande passante dans la bande de 2600 MHz et 800 MHz, les opérateurs doivent agréger jusqu’à 3 ou 4 porteuses dans des bandes différentes. Ainsi, Bouygues proposent 300 Mbit/s en proposant 40 MHz de bandes répartis en :

  • 10 MHz dans la bande de 800 MHz
  • 15 MHz dans la bande de 1800 MHz (refarming)
  • 15 MHz dans la bande de 2600 MHz

La conception de Modem permettant l’agrégation de porteuses est plus complexe que prévue. En effet, initialement la norme prévoyait 8 catégorie de terminaux (cat 1 à cat 8) mais de nouvelles catégories de terminaux ont été rajoutées (cat 9, 10 et 11) proposant des agrégations sur 3 et 4 porteuses sur des bandes différentes.

Selon le tableau ,les catégories 9 et 10 attendus pour cette fin d’année et l’année prochaine atteindront pour leur part 450 / 50 et 450 / 100 Mbps. Mais, ce débit n’est possible que si l’opérateur dispose de 3 bandes de 20 MHz (rappelez vous de la règle :  5 MHz de  bande permet d’atteindre un débit de 37.5 MHz). La catégorie 11 n’est donc pas attendue avant 2016.

Capture

Donc pour résumer, en fin d’année, Bouygues proposera 300 Mbit/s, Orange et SFR devront attendre le 25 mai 2016 pour pouvoir exploiter eux-aussi la bande de 1800 MHz (refarming). A partir de cette date, Orange proposera donc un débit de 337,5 Mbps.

 

07894217-photo-bouygues-telecom-5-fevrier-2015

VoLTE

En parallèle les opérateurs mettent en place la VoLTE. A titre expérimental encore à ce jour pour la plupart des opérateurs, Orange vient d’ouvrir dans la nuit du 14 au 15 septembre le réseau VoLTE sur le Grand Ouest.

La VoLTE va permettre à l’opérateur d’offrir une communication téléphonique avec une meilleure qualité de la voix notamment grâce au codec AMR WB. La Voix est donc transportée par l’IP sur un flux RTP, quand à la SIG Téléphonique (pris en charge par le réseau IMS), celle-ci est transportée par le protocole SIP sur l’UDP.

L’offre commerciale pourra aussi proposer sur des services complémentaires apportés par un serveur d’application téléphonique (TAS). Le TAS permettra de faire profiter aux utilisateurs de tous les services offerts sur les postes des entreprises (TAS = Serveur téléphonique, comme un IPBX), à savoir les renvois d’appel, le parçage, …