Double Connectivité (DC – Dual Connectivity) 4G/5G

La 5G arrivera en 2020, le déploiement sera un déploiement au niveau de la couche radio. Comment la 5G sera déployée? Quels services va t’elle apporter? Quelles performances? Comment la station de base 5G (gNB) sera controlée? Peut on parler de 5G si le coeur réseau est 4G?

Ces réponses seront apportées dans une série d’articles, et voici le premier article d’une longue série sur la double connectivité.

Introduction

La double connectivité implique la présence de deux stations de base pour apporter des ressources radio-électrique vers un terminal mais un seul point de terminaison de signalisation vers le coeur réseau. Dans une première phase, le coeur de réseau est le coeur de réseau 4G (EPC), le point de terminaison est donc l’interface S1-MME.

La double connexion implique soit deux stations de bases LTE (se référer à l’article suivant) soit une station de base NR et une station de base LTE (Multi-Radio DC – MR-DC aussi nommé NR-DC).

Chaque nœud radio contient plusieurs cellules (une cellule pour une antenne omni-directionnelle, trois cellules, 6 cellules pour des antennes multi-sectorielles, …), et chaque nœud gère plusieurs porteuses LTE ou NR (agrégation de porteuses).

La double connexion implique donc la gestion de groupe de cellules (GC : Group Cell) pour chaque nœud radio. L’objectif d’un groupe de cellules est de gérer les données sur une ou plusieurs porteuses pour augmenter le débit. Dans un groupe de cellules (GC), on identifie la cellule principale (SpCell) qui est en charge de contrôler toutes les cellules du groupe et optionnellement une ou plusieurs cellules secondaires (SCell).

La double connectivité définie la notion de support MCG (Master Cell Group) et SCG (Secondary Cell Group bearer). Le support MCG est géré par la station de base maitresse, le support SCG correspond aux supports de la station de base secondaire. La double connexion permet de modifier la terminaison du plan de transport (U-plane termination) vers le support MCG ou SCG via la signalisation S1-MME sans modifier le point de terminaison du nœud de contrôle S1-MME (la signalisation est toujours définie entre le cœur de réseau et la station de base maîtresse).

Ainsi, si on appelle MCG le groupe de cellule maître et SCG le groupe de cellules secondaires, le MSG et le SCG peuvent avoit un SpCELL et des SCELL.

La fonctionnalité Double Connectivité (Dual Connectivity DC) a initialement été spécifiée sur le réseau de mobiles 4G entre deux stations de bases eNB différentes (sur des porteuses différentes) avec l’objectif d’augmenter le débit ressenti par l’utilisateur en agrégeant des flux des deux eNB en dépit de la latence provoquée par le lien X2 (backhaul). Cela constitue une différence avec l’agrégation de porteuses ou l’agrégation des flux est réalisée sur la même station de base dans deux bandes radios différentes. Dans le cas de la double connexion, les stations de base n’ont pas besoin d’être synchronisées (et peuvent donc être non co-localisées).

Figure 1 : Agrégation de porteuses et Double Connexion

L’interface X2 est une interface physique, généralement en Fibre Optique. L’interface X2 peut être séparée en deux interfaces, l’interface X2-U pour l’échange de données du plan utilisateur entre la station de base maîtresse et secondaire (handover, double connexion), et l’interface X2-C permettant l’échange des informations de contrôle entre les deux stations de base.

La pile protocolaire pour le plan de transport sur l’interface X2-U utilise les couches protocolaires GTP-U, UDP, IP et la couche de niveau 2

  1. La double connectivité DC 4G-4G (se référer à l’article DC 4G/4G)

L’option DC 4G-4G a déjà été présentée dans un article précédent, on différencie le plan de contrôle et le plan de trafic. L’une des deux stations de base est responsable de la signalisation avec le cœur réseau et le terminal. Les supports (nommés bearer) de signalisation correspondent aux bearer SRB1 et SRB2 entre le terminal Ue et la station de base maîtresse (MeNB). La station de base secondaire est responsable de la connexion de données additionnelles sur le lien radio (DRB) et vers le cœur réseau.

Plan de contrôle :  La station de base maîtresse (MeNB) établie la connexion RRC avec le terminal UE et la connexion radio avec l’entité SeNB (Secondary eNB) est contrôlée par la station de base maîtresse.

Plan utilisateur : Deux options sont supportées pour la DC 4G-4G :

  • Option 1A : Le cœur de réseau établit deux supports (bearer) avec chacun des entités eNB ;
  • Option 3C : Le support est séparé par l’entité MeNB : Split Bearer

Figure 2 : Pile protocolaire DC 4G-4G

Le terminal UE ne dispose que d’une seule entité RRC.

Dans le cas de la double connexion 4G-4G, les deux options retenues parmi toutes les options possibles sont l’architecture 1A et 3C.

Pour l’option 1A, la séparation des flux est gérée au niveau du cœur réseau (SGW).

Pour l’option 3C, la séparation des données est basée sur le routage de support de données PDCP.

Figure 3 : Double Connexion 4G-4G

  1. DC 4G-5G : Déploiement NSA

Le mode de déploiement de la 5G s’appuiera en 2020 sur une double connectivité 4G-5G (mode NSA – Non Standalone Architecture). L’opérateur conserve le cœur de réseau 4G (EPC), la signalisation entre l’accès radio et le cœur de réseau est réalisée par l’entité eNB. On parle d’option 3

Remarque : si le cœur de réseau était 5G on parlerait alors d’option 7, tout chose égale par ailleurs.

Pour l’option 3, le terminal UE est sous le contrôle de la station de base 4G et lors de la demande de connexion radio avec la station de base eNB (LTE PCell), le terminal va être configuré pour monter un support radio NR avec la station de base gNB (dénommée en-gNb : E-UTRAN – NR gNB pour rappeler le mode DC).

Plan de contrôle : Sur l’interface radio, le terminal UE est contrôlé par l’entité eNB et en-gNB (par des messages RRC). La signalisation (CP : Control Plane) est échangée entre les deux stations de base via le lien backhaul X2.

L’application X2AP réalise plusieurs fonctions comme le rappelle la figure 4 :

Figure 4 : les fonctions supportées par l’application X2AP

Plan Utilisateur : Le terminal UE peut être connecté simultanément sur l’entité eNB et en-gNB pour le plan utilisateur ou uniquement avec l’entité en-gNB.

La fonction DC 4G-5G option 3 se décline en trois sous options (figure 4) en séparant le support au niveau de l’accès radio (split bearer) ou en créant un support au niveau du cœur de réseau (MCG ou SCG) :

  • option 3 : La séparation du support (split bearer) est réalisée par l’entité MeNB. Le trafic (UP : User Plane) est transmis à travers le lien X2 vers l’entité SgNB (Slave en-gNB) ;
  • option 3a : La création d’un bearer secondaire (SGC) s’effectue au niveau du cœur réseau (SGW) et le flux de données est transmis sur deux supports (bearer) complémentaires, l’un vers l’entité MeNB, l’autre vers l’entité SgNB ;
  • option 3x : La création d’un bearer est réalisée au niveau du cœur radio (SCG) et la séparation du bearer est réalisée par la station de base secondaire (SCG split bearer).

Figure 5 : Les options 3/7 vert à gauche, 3a/7a (en bleu), 3x/7x vert à droite du mode NSA

L’option 3x consiste à séparer le support DC au niveau de la station de base gNB. L’entité eNB peut conserver un ou plusieurs bearer avec le cœur de réseau (MCG bearer) ou ne gérer que la signalisation entre l’accès radio (eNB/en-gNb) et le cœur de réseau.

Dans le cas du split-bearer, les données sont distribuées ou dupliquées entre les deux nœuds radios. L’équilibrage de charge est réalisé de manière dynamique par le nœud d’ancrage (MeNB ou SgNB) en fonction du trafic, c’est-à-dire par l’entité PDCP du nœud d’ancrage (MeNB pour l’option 3 et SgNB pour l’option 3x).

Dans la suite, on appellera indifférent SgNb ou en-gNB.

Architecture du réseau M2M

Cet article est la suite des deux précédents :

  1. http://blogs.univ-poitiers.fr/f-launay/2019/02/15/iot-blockchain-ia-machine-learning-des-technologies-disruptives/
  2. http://blogs.univ-poitiers.fr/f-launay/2019/03/18/iot-bigdata-ia-un-monde-100-connecte-pour-les-systemes-cyber-physique-cps/
  • Architecture du réseau M2M

L’architecture générique du réseau M2M a été spécifiée par l’institut ETSI qui a défini les fonctions de bases pour pouvoir échanger des données entre un objet et un serveur. Cette architecture s’appuie sur un ensemble de fonctionnalités logicielles déployées dans un framework.

Le but du framework est de décrire les services qui permettent de gérer l’objet : enregistrement, authentification, récupération des données de manière périodique ou par une méthode de réveil, accessibilité de l’objet, localisation, type de réseau supporté, … Les applications sont réunies dans une bibliothèque logicielle générique prenant en charge l’objet quel que soit le réseau de connectivité, auxquelles se rajoutent des applications spécifiques permettant de gérer les caractéristiques de chaque réseau de connectivité. On parle de Capacité du réseau (ou service capabilities), les fonctionnalités proposées par le réseau d’accès et gérées par le framework.

L’architecture du réseau M2M se décompose en trois parties :

  • Le domaine d’application ;
  • Le domaine des réseaux ;
  • Le domaine des dispositifs ;

Figure 1. L’architecture fonctionnelle du M2M

Le domaine des dispositifs est composé des éléments suivants :

Le domaine des réseaux gère la connectivité de l’objet. Cela suppose l’enregistrement de l’objet, la gestion du plan de transport (établissement d’un tunnel pour la Data),  la gestion de la mobilité, la gestion de la qualité de service et la facturation. Le domaine des réseaux se découpent en trois parties :

  • Réseau d’accès : Il s’agit d’une connexion soit en tout IP via un support en cuivre, un support optique, un lien cellulaire (GPRS, 4G, WiMax), lien satellitaire ou d’une connexion non IP via le réseau GSM ;
  • Cœur réseau : Il fournit les fonctions comme la connectivité (IP ou SMS), les fonctions de contrôle du réseau (qualité de service) et l’autorisation du service demandé ;
  • Les capacités de Service (M2M Service Capabilities). Il fournit les fonctions M2M qui sont offertes aux serveurs d’applications client via des interfaces ouvertes (API) en s’appuyant sur les fonctionnalités du cœur réseau à travers les interfaces normalisées (Gx,Gi) ;

Le domaine d’application est composé :

  • D’un serveur d’application client (AS)
  • D’un portail client qui fournit des fonctionnalités au client.

La première fonctionnalité du portail client consiste à inscrire l’objet  via une interface https. L’étape de provisioning consiste à enregistrer le n-uplet identifiant(s) dispositif(s), clé(s) privée(s) et identifiant(s) applicatif(s)  dans le cœur réseau de l’opérateur. Cette étape est partiellement réalisée par l’opérateur pour le réseau cellulaire et entièrement réalisée par le client dans le cas du réseau LoRa.

Les autres fonctionnalités sont proposées au client par une interface API permettant au client d’accéder à un serveur de données dont le rôle est de stocker les informations fournies par l’objet ou par le réseau. En général le client se connecte via le protocole http (API REST), ou un protocole plus léger comme le protocole MQTT, XAP, XMPP ou COAP. La demande d’accès est contrôlée par un jeton d’authentification (Token) transmis au moment de la requête http. Le client doit donc activer un compte auprès de l’opérateur (lors de la première étape) pour utiliser une ou plusieurs API. Chaque API est associée à un jeton (comme par exemple, l’identifiant APPEUI pour LoRa).

Au niveau du portail client, l’opérateur dispose en plus :

  • d’outils de supervision du réseau et des sauvegardes de logs ;
  • des bases de données contenant les informations de souscriptions de chaque client : identité et clé privée de chaque objet pouvant s’enregistrer sur le réseau ainsi que les règles à appliquer pour chaque objet et les droits (les jetons d’authentification) ;
  • d’un serveur de facturation et de gestion de la politique des droits;

IoT, Blockchain, IA, machine learning : Des technologies disruptives?

Les évolutions technologiques récentes vont apporter des changements profonds dans les domaines de la santé, de la logistique, le transport, l’énergie, l’agriculture, …

Si le déploiement de l’IoT (Internet of Things) destiné à collecter un ensemble d’informations constitue la première brique de cette évolution, la plus-value de cette transversalité numérique ne peut être obtenue qu’en garantissant la sécurisation des données collectées et le traitement efficace de ces données.

En cela, la technologie Blockchain s’insère dans l’écosystème de l’IoT en apportant un stockage des données, en assurant le transport sécurisé des données échangées et en permettant la traçabilité des données.

Quant aux traitements des données, l’intelligence artificielle (IA) permet de les valoriser et de les traduire en informations exploitables facilitant ainsi l’analyse décisionnelle des systèmes complexes. De surcroît, les méthodes d’apprentissages autonomes (Machine Learning) permettent également de classifier les données et d’apporter des outils de prédictions des pannes.

Les applications IA pourraient être mise en œuvre sur des lames de serveurs au plus proches des données collectées (MEC : Mobile Edge Computing).

Ainsi, les secteurs de la santé (capteurs et IA pour détecter l’évolution des maladies), du transport (véhicules autonomes), des chaînes d’approvisionnement (réparation des chaînes de production avant la cassure des pièces usées, l’approvisionnement en flux tendus), de l’énergie (délestages des sites industriels en assurant un transport de l’énergie au plus proche) seront impactés par la complémentarité de ces technologies disruptives.

Dans ces écosystèmes de plus en plus complexes, la donnée reste l’élément fondamental et le premier maillon d’une nouvelle ère économique. Les cabinets d’analystes estiment une évolution constante du marché des capteurs de l’IoT pour atteindre une centaine de milliards de dollars d’ici 2023 et une croissance du taux actuariel (CAGR – Compound annual growth rate) de 13%.

SigFox est le premier opérateur à s’être positionné sur le marché de la transmission sans fil des données issues des capteurs en déployant le réseau de transmission longue portée à basse consommation (LPWAN : LoW Power WAN).  Ce réseau LPWAN répond à la demande des compteurs intelligents (smart-meters, compteur d’eau, compteur de gaz), à la gestion des villes (smart-city) pour lesquels la communication est à latence élevée.

Aujourd’hui, l’opérateur Télécom SigFox est concurrencé par l’opérateur QoWiSio, l’opérateur Américain Ingénu, et l’alliance LoRaWAN avec le déploiement de LoRa par les opérateurs télécoms historiques.

Le réseau cellulaire 4G se positionne également sur ce secteur en étendant ses fonctionnalités pour répondre à l’émergence du marché de l’Internet des Objets. Ce réseau dédié aux communications Machine à Machine (MTC – Machine Type Communication) est destiné à devenir le premier réseau cellulaire LPWAN (Low Power WAN). Le premier avantage est de pouvoir rapidement apporter une couverture mondiale avec optionnellement une qualité de service.

L’IoT cellulaire (par son réseau d’accès NB-IoT, LTE-M et prochainement 5G NR) devrait connaître la plus forte croissance avec en point de mire, entre 10 000 et 100 000 objets connectés sous la couverture d’une seule station de base. Orange a ouvert son réseau LTE-M en novembre 2018, comme annoncé dans un précédent article traitant du cellular IoT.

Le réseau 5G quant à lui va permettre d’apporter de nouvelles solutions pour les communications M2M à temps réel (missions critiques URLLC : Ultra Reliable Low Latency Communication) pour répondre au besoin du secteur de l’automobile et de l’industrie (IIoT – Industrial IoT).

Le laboratoire LIAS s’intéresse à ces différentes technologies notamment comme application visée (de manière non exhaustive) le smart-grid, le secteur du transport,…

Dans les prochains articles je reviendrai plus particulièrement sur le MTC (réseau 4G).

Il est à rappeler que ces métiers s’adressent aux femmes et aux hommes, je vous invite à consulter le site femmes-numérique.fr

Blockchain, intelligence artificielle, big data, cyber sécurité, objets connectés, cloud…

 

L’initiative

 

LTE Gigabit

Entre la Release 8 qui normalise le LTE et la Release 15 qui a va standardiser le réseau 5G, le réseau LTE a connu trois phases d’évolution importante :

  • LTE – R8/R.9
  • LTE-Advanced aussi nommé la 4.5G : R10 à R12.
  • LTE-Advanced Pro ou 4.9 G : R13/R14.

Réseau opérateur : Accès radio

L’évolution du cœur radio du LTE-Advanced permet d’atteindre des performances allant à 1 Gb/s sur le lien radio. On retrouve ainsi cette norme sous le nom commercial LTE Gigabit. Le premier déploiement du LTE Gigabit a été lancé par Telstra en février 2017 avec Qualcomm et Ericsson mais Monaco a également déployé ce réseau.

Pour comprendre les performances atteintes, revenons sur le principe radio du LTE :

  • Bande spectrale : 20 MHz
  • Modulation DL : QPSK, 16 QAM, 64 QAM et 256 QAM
  • MIMO : Pas de MIMO, MIMO 2×2, MIMO 4×4.
  • Agrégation de porteuse (CA).

Dans un précédent article, nous avions estimé le débit total LTE à 100 Mbps sans MIMO et avec une modulation 64 QAM. L’estimation était biaisée car le trafic estimé prenait en compte à la fois les signaux de références et les canaux de contrôle PDCCH, ainsi que les canaux de synchronisation et de broadcast (PSS, SSS, BCCH). Prenant en compte que le PDSCH, le débit utile maximal était de 75 Mbps.

L’évolution de la modulation de 64 QAM à 256 QAM permet de transmettre 8 bits par symbole (256 QAM) au lieu de 6 bits par symbole (64 QAM), améliorant d’un rapport 4/3 le débit.

L’utilisation de 4 antennes en émission et en réception permet la transmission simultanée de 4 flux de données, soit une augmentation de débit 4 fois supérieure.

Au total, on arrive donc à un débit maximum de 400 Mbps.

L’agrégation de porteuses permet à l’opérateur de proposer plusieurs bandes LTE pour un seul UE. Le LTE a terme proposera, pour un seul UE, jusqu’à 5 bandes LTE. L’opérateur dispose de plusieurs bandes LTE. En France, les opérateurs disposent de bande de 10 MHz, 15 MHz ou 20 MHz sur les fréquences de 800 MHz, 2600 MHz et 1800 MHz. Prochainement, les opérateurs utiliseront les bandes de 700 MHz.

Avec 20 MHz de bande, le 4×4 MIMO et une modulation de 256 QAM, le débit utilisateur maximal est de 400 Mbps. Ainsi, avec 30 MHz de bandes supplémentaires sur 3 porteuses différences, les opérateurs en France pourront proposer du Gigabit LTE.

Pour résumer, l’opérateur doit disposer d’un minimum de 50 MHz de bande pour pouvoir commercialiser du Gigabit LTE sur 3 porteuses différentes.

Les terminaux : Catégorie de UE

Les terminaux doivent aussi supporter de telles fonctionnalités. La 3GPP a défini différentes catégories de terminaux, et seuls les terminaux de catégorie 16 vendus actuellement supportent de telles performances. Le premier terminal est le Samsung S8 avec la puce Exynos 8895.

A ce jour, on liste :

  • HTC U11
  • LG V30
  • Sony Xperia XZ1
  • Iphone X

L’IPhone 8 n’utilise pour l’instant que du MIMO 2×2, mais les prochains terminaux vendus en 2018 devraient (?) profiter de nouvelles puces pour exploiter le MIMO 4×4.

Que doit on attendre d’ici la fin de l’année? Plus de Débit et la VoLTE.

De la 4G à la 4G++

De manière évidente, la première réponse est : Plus de débit!

En effet, après l’annonce de la 4G permettant d’atteindre des débits inégalés par rapport au réseau 3G/3G+ et H+, après l’annonce de la 4G+ permettant de doubler voir tripler le débit par rapport à la 4G, les opérateurs vont maintenant dégainer leur 4G++.

Mais quelle réalité derrière ces noms commerciaux?

Revenons un moment sur la norme, les évolutions proposées et normalisées sont l’évolution du LTE au LTE-Advanced. Cette dernière norme, une fois déployée, permettra d’atteindre un débit allant jusqu’à 3 Gbps par l’agrégation de 5 porteuses de 20 MHz avec un terminal de catégorie 8.

Pour les opérateurs, la dénomination du réseau est différente :

  • La 4G exploite une seule bande de fréquence
  • La 4G+ permet l’agrégation de deux bandes de fréquences
  • La 4G++ permet l’agrégation de trois bande de fréquences.

A ce stade, le LTE-Advanced sur 5 bandes devrait se nommer 4G++++ ou 4G puissance 5?

Mais en terme de débit?

La subtilité arrive quand on compare maintenant les offres des opérateurs. En effet, pour simplifier on considère à cette date que 5 MHz de bande permet d’obtenir un débit de 37,5 Mbps sur le lien descendant (attention, cela ne sera plus le cas pour les terminaux de catégories 11).

En terme de débit, voici la liste des terminaux de catégorie 1 à 14.

LTEUECategoriesMay2015

L’agrégation de porteuses permet d’atteindre des débits plus élevé. Mais de par la faible disponibilité de bande passante dans la bande de 2600 MHz et 800 MHz, les opérateurs doivent agréger jusqu’à 3 ou 4 porteuses dans des bandes différentes. Ainsi, Bouygues proposent 300 Mbit/s en proposant 40 MHz de bandes répartis en :

  • 10 MHz dans la bande de 800 MHz
  • 15 MHz dans la bande de 1800 MHz (refarming)
  • 15 MHz dans la bande de 2600 MHz

La conception de Modem permettant l’agrégation de porteuses est plus complexe que prévue. En effet, initialement la norme prévoyait 8 catégorie de terminaux (cat 1 à cat 8) mais de nouvelles catégories de terminaux ont été rajoutées (cat 9, 10 et 11) proposant des agrégations sur 3 et 4 porteuses sur des bandes différentes.

Selon le tableau ,les catégories 9 et 10 attendus pour cette fin d’année et l’année prochaine atteindront pour leur part 450 / 50 et 450 / 100 Mbps. Mais, ce débit n’est possible que si l’opérateur dispose de 3 bandes de 20 MHz (rappelez vous de la règle :  5 MHz de  bande permet d’atteindre un débit de 37.5 MHz). La catégorie 11 n’est donc pas attendue avant 2016.

Capture

Donc pour résumer, en fin d’année, Bouygues proposera 300 Mbit/s, Orange et SFR devront attendre le 25 mai 2016 pour pouvoir exploiter eux-aussi la bande de 1800 MHz (refarming). A partir de cette date, Orange proposera donc un débit de 337,5 Mbps.

 

07894217-photo-bouygues-telecom-5-fevrier-2015

VoLTE

En parallèle les opérateurs mettent en place la VoLTE. A titre expérimental encore à ce jour pour la plupart des opérateurs, Orange vient d’ouvrir dans la nuit du 14 au 15 septembre le réseau VoLTE sur le Grand Ouest.

La VoLTE va permettre à l’opérateur d’offrir une communication téléphonique avec une meilleure qualité de la voix notamment grâce au codec AMR WB. La Voix est donc transportée par l’IP sur un flux RTP, quand à la SIG Téléphonique (pris en charge par le réseau IMS), celle-ci est transportée par le protocole SIP sur l’UDP.

L’offre commerciale pourra aussi proposer sur des services complémentaires apportés par un serveur d’application téléphonique (TAS). Le TAS permettra de faire profiter aux utilisateurs de tous les services offerts sur les postes des entreprises (TAS = Serveur téléphonique, comme un IPBX), à savoir les renvois d’appel, le parçage, …

 

 

Panne chez SFR – Rappel d’une autre panne en 2012

Le 6 juillet 2012, Orange était affecté par une panne nationale, l’équioement en défaut avait été identifié : le HLR/HSS  lors de la mise à jour de ce dernier via Alcatel Lucent. Se référer à l’article : http://4glte.over-blog.com/article-panne-chez-orange-107869233.htm

Dans cet article, un ensemble d’hypothèse avait été faite pour lancer des pistes sur les pannes possible.

Aujourd’hui, jeudi 24 juillet, SFR fait façe à une panne nationale, les résultats de l’enquète incrime à nouveau la mise à jour du (d’un?) HLR par Alcatel Lucent,.

On peut alors se poser la question sur les procédures de mises à jour du HLR et pourquoi l’équipe Alcatel-Lucent est prise à défaut 2 ans près sur la mise à jour du HLR, d’autant plus  que chaque HLR dispose d’un système de backup comme solution de secours. C’est ce qui avait d’ailleurs été fait en 2012 par Orange : Le logiciel NG HLR (Lew Generation HLR) avait été mis à jour la veille. Vers 17h30, le réseau a rebasculer sur des bases non mises à jour mais sans effet et pourtant, il s’agissait bien de l’équipement défectueux. Le NG-HLR contient une base de données définissant le type d’abonnement de tous les clients de l’opérateur et qui contient aussi la localisation des abonnés. Ces éléments sont stockés dans la partie Back End du NG-HLR et mise à jour chaque fois qu’un client se déplace dans une nouvelle zone de localisation (LAC). La mémoire de cette base de données était saturée. Pour résoudre ce problème, il a néanmoins fallu d’un grande concertation entre Orange et Alcatal Lucentet un travail remarquable de toutes les équipes.

Malgré l’analogie entre ces deux pannes, est ce la même panne?

Orange avait publié une vidéo didactique présentant la panne : http://www.dailymotion.com/video/xs4bs8_resolution-de-l-incident-reseau-le-deroule-en-details_tech

A priori il y a deux ans la panne touchait tous les abonnés, hors l’opérateur possède plusieurs HLR. Pour SFR, un ensemble de clients sont affectés (les nouveaux clients 3G et 4G). Un HLR peut on être incriminé par contre en 2012, un seul HLR ne pouvait pas être responsable de la panne des 26 millions de clients. Une autre hypothèse était de supposer que le HLR en question était le V-HLR, un HLR virtualisé jouant le rôle d’administration et d’interconnexion des HLR. Mais, cela n’a pas été évoqué ni par Orange, ni par Alcatel.

Pour anecdote, le site Presse-citron terminait l’article en relatant la vidéo par cette conclusion « Reste à savoir si Orange et ses concurrents sauront tirer toutes les conséquences de ce dysfonctionnement pour faire en sorte que cela n’arrive plus. »

 

LTE-Advanced (4G+) sera prochainement commercialisé

LTE-Advanced

Le LTE-Advanced, dénommé aussi LTE-A, a été défini dans la R10 (démarré en octobre 2009) et prévoyait une augmentation du débit en utilisant plusieurs porteuses (agrégation de porteuses). En 2013, les équipementiers expérimentaient les premiers smartphones (cf article S4-LTE-A) et depuis quelques mois les opérateurs Français (notamment Bouygues, Orange et Free) expérimente le LTE-A.

L’idée à déjà été exploitée en 3G avec la dénomination Dual Carrier et s’appuie sur le fait que le débit dépend de la bande de fréquence utilisée : Plus la bande est importante, plus le débit est élevé.

Concernant le LTE, celui-ci exploite une bande de 20 MHz au maximum ce qui permet d’avoir un débit de 150 Mbit/s. En agrégeant 5 porteuses, la bande totale atteint 100 MHz, le débit peut donc être 5 fois plus élevé. En augmentant le nombre d’antennes (MIMO) au niveau de l’émetteur et du récepteur et en améliorant la modulation radio (jusqu’à 256 QAM) lorsque les conditions radios sont excellentes (smartphone proche de l’antenne), le débit peut dépasser le Gbps.

Le LTE-A est défini pour atteindre des débits descendants de 1 Gbps. Son successeur, Le LTE-B, selon Huawei pourrait atteindre plusieurs dizaines de Gbps.

Figure 1

Expérimentation en France de la 4G+

En février, Bouygues dégainait en annonçant le réseau 4G sur Bordeaux et Lyon à partir de Juin 2014 en profitant du re-farming pour avoir la bande suffisante. Orange répliquait en annonçant l’expérimentation du LTE-A sur Bordeaux (pour un débit de 300 Mbps et une bande de 2*20 MHz).

Pour profiter du LTE-A, il faudra un nouvel abonnement (en augmentant la volumétrie de votre abonnement) mais également un smartphone compatible (évolution logicielle)

Free a utilisé un drone pour expérimenter la couverture en 4G+. Cela rappelle l’expérimentation Globalstar et Iridium avec des satellites en basses altitudes (LEO), enfin lisez bien la note du bas d’article (et regardez la date de publication).

Image

Après ce coup de buzz de ZDnet (qui publie de très bons articles), retenez l’arrivée de la 4G+ pour Bouygues et Orange en Juin 2014, et SFR à partir de septembre.

Technologie de transport de la voix en 4G : CSFB

CSFB : Circuit Switched FallBack

Le réseau cœur déployé pour la 4G (nommé EPC : Evolved Packet Core) a été conçu pour s’interconnecter aux réseaux IP comme le LAN, la 3G, et évidemment le LTE.

Le principe du CS FallBack est assez simple : Lorsqu’un terminal mobile reçoit un appel téléphonique (Voix), il est informé via le message de Paging que le réseau auquel il doit accéder est le réseau de Commutation de Circuit (CS). Par conséquent, si le mobile était attaché sur le réseau 4G, il bascule vers le réseau 3G, et le mobile envoie une réponse d’acquittement vers le cœur de réseau en commutation de circuit (CS-Core). A partir de ce moment, toute la signalisation pour la session d’appel téléphonique est prise en charge par le réseau 3G. La figure 1 rappelle l’architecture des deux réseaux : CS sur le réseau 3G et PS sur le réseau 4G (EPC)

CSFB_DoCoMO

Figure 1 : Coeur Réseau 2G/3G et 4G

Pour que le Coeur de réseau 4G (EPC : Evolved Packet Core) soit compatible avec la technologie CSFB, il est nécessaire que ce dernier puisse communiquer avec le cœur de réseau en commutation de circuit CS-Core du réseau 2G/3G. En effet, le MME (mobility Management Entity) doit pouvoir contacter le MSC (Mobile Switch Center) et la VLR afin de donner procuration au réseau 2G/3G de la gestion de la mobilité. L’interface utilisée se nomme SG, et fait référence, en reprenant son rôle, à l’interface Gs existante entre le SGSN et le MSC dans le réseau 3G.

Lorsque l’appel est accepté, la technologie CSFB utilise à nouveau l’interface SG pour informer le réseau LTE de l’acceptation de l’appel. L’acquittement est donc transmis par le réseau en Commutation de Circuit (CS) vers le réseau LTE en empruntant l’interface SG.

MWC 2014 – Petit résumé

Dans cet article, je vous propose un résumé des annonces faites par les constructeurs au cours du MWC 2014 (http://www.mobileworldcongress.com/. La liste est loin d’être exhaustive, l’absence d’Apple et de Google dans cet article n’est pas un oubli : Ni l’un, ni l’autre ne sont présents au salon. Dans cet article, les constructeurs sont classés par ordre alphabétiques, mais évidemment tout constructeur qui me donne un smartphone, une tablette ou un wearable se trouvera en haut de la liste, avec des couleurs premium – J. Trèves de plaisanterie, voici la liste :

HTC a présenté :

  • Les smartphones HTC Desire 610 et HTC Desire 816 attendus en France fin mars/courant avril dans la version 6 de la surcouche HTC (les améliorations et fonctionnalités de la surcouche n’ont pas encore été dévoilées). Quant au prix, le smartphone HTC Desire 610 sera commercialisé en mai au prix de 300 euros et le HTC Desire 816 sera proposé à partir de 379 euros en avril. Les caractéristiques techniques peuvent être lues sur le site phonandroid.

Huawei mise sur la selfie en conservant ses petits prix :

  • Smartphone 4G Ascend G6 à partir de 299 euros disponible dès avril. Ce smartphone fonctionne sous Android Jelly Bean (4.2), la caméra avant de 5 Mpixels et un angle de 88° est pensé pour les applications de type «selfie », d’autant plus qu’une application vocale permet de lancer la photo. Attention, le Smartphone 4G Ascend G6 sera également décliné en version 3G. Le prix évoqué de 249 euros semble être celui du smartphone 3G, et à 299 euros pour la 4G . Plus d’information sur les caractéristiques techniques sur ce site. (Et oui, je vis actuellement en Belgique J)
  • Phablette Mediapad X1 de 7 pouces concurrençant l’IPAD mini au prix de 399 euros
  • Tablette Mediapad M1 de 8 pouces annoncée à 299 euros
  • Wearable : Une montre connectée (TalkBandB) capable de servir d’oreillette Bluetooth à 99 euros
  • Hotspot MiFI E5786

 

Nokia a présente trois versions de son smartphone 3G sous Android  (multi-sim)

  • Nokia X au prix de 119 euros
  • Nokia X+ non vendu  en France
  • Nokia XL commercialisé à partir d’Avril au prix de 149 euros

Une présentation vidéo est disponible sur le site cnetfrance.

Samsung a annoncé :

  • Le Galaxy S5, disponible à partir du 11 avril 2014(en Belgique mais aussi en France) est annoncé au prix de 699 €. Le S5 est compatible 4G de catégorie 4 (150 Mbit/s donc non compatible LTE-A car seuls les smartphones de catégories au moins 5 seront compatibles). Ce smartphone propose un capteur d’empreinte permettant de réaliser des payements sur Paypal (et déverrouiller le téléphone). Je vous propose de visualiser la présentation avec vidéo réalisée par 01net.
  • Wearable : 2 nouvelles montres GEAR sont proposées dénommées Gear 2 et Gear 2 Neo fonctionnant sous Tizen

Sony a dévoilé deux nouveaux smartphones.

  • Le Xperia Z2 (le successeur du Z1) compatible 4G/LTE fonctionne sous Android 4.4 et est proposé au prix de 699 euros. Je vous propose de découvrir ses caractéristiques (« perfect ») et la vidéo sur le site suivant de nowhereelse.
  • Le Xperia M2, un smartphone 4G plus abordable puisqu’il est affiché au prix de 299 euros. Il fonctionne sous Android 4.3

ZTE a annoncé

  • Phablette  Gran Memo II, commercialisée en France à partir du 2ème semestre, son prix  n’est pas encore indiqué mais on doit s’attendre à un prix autour de 350 – 450 euros. Le Gran Memo tourne sur la version Android KitKat (4.4.2).

Pour avoir un descriptif et une comparaison des différents produits, je vous réfère à l’article de Mme Florence Legrand sur le site du magazine LesNumériques.

Concours 4G Radio planning

La société ATDI lance le concours du meilleur radio planning auprès des étudiants des universités telecom du monde entier pour le déploiement de la 4G en France.

Attention : Attention, les inscriptions sont closes le 28 février

Le radioplanning sera basé sur l’utilisation des Femtocells.

La société mettra à disposition son logiciel ICS designer et la cartographie 3D France en MR (20 m résolution) ainsi que les principales villes de France en HR, la base de données des sites 2G/3G existants.

Les concurrents devront choisir entre deux politiques de déploiement du réseau :

  • . Aménagement du territoire (zones blanches…)
  • . Rentabilité économique (ARPU…)

Chaque projet devra, de plus, comporter une section décrivant les débits maximum attendus en 4G mobile (UL & DL) et dans quelles conditions.

Les prix :

Les lauréats se verront affectés un prix de :

1er prix :

  • 10 000 EUR
  • Une offre d’emploi pour un poste d’ingénieur au siège d’ATDI ou dans une de nos filiales

2nd prix :

  • 4 000 EUR
  • Une offre de stage rémunéré au siège d’ATDI ou dans une de nos filiales au choix

3eme prix :

  • Un ordinateur portable avec le logiciel ICS designer Cloud (1 an)
  • Une offre de stage rémunéré au siège d’ATDI ou dans une de nos filiales au choix

Pour s’inscrire, rendez vous sur le site de l’ATDI, concours 4G.