L’actuelle réforme du DUT menace l’avenir des IUT !

Depuis le début du blog (2011 sur over-blog et 2013 sur le site hébergé par l’Université de Poitiers), chaque article présentait une caractéristique des réseaux de mobile 4G/5G.

Je fais une entorse à ce règlement pour mettre en avant une pétition sur l’évolution programmée des DUT vers les BUT et les conséquences de cette réforme.

À partir de septembre 2021, les Diplômes Universitaires de Technologie (DUT) évoluent vers des Bachelors Universitaires de Technologie (BUT) élevant le diplôme au grade de licence (bac+3). Il est important de préciser tout d’abord que notre collectif n’est pas opposé au BUT mais plutôt aux conditions de mise en place de celui-ci.

Suite de la pétition :
https://www.mesopinions.com/petition/autres/actuelle-reforme-dut-menace-avenir-iut/131203

Merci

Cours Master – Chap 3 (Part 2)

L’agrégation de porteuses sur les bandes licenciées et non licenciées

3.3. Configuration : Scénarios d’Agrégations (Déploiement)

3.3.1 : Agrégation de porteuses en FDD

Afin de s’adapter aux bandes de fréquences acquises par l’opérateur, les porteuses agrégées peuvent avoir des largeurs de bande différentes. Ainsi, l’agrégation de porteuses peut s’effectuer sur :

  • Des porteuses contiguës dans une bande : Classe A
  • Des porteuses non contiguës dans une bande : Classe B
  • Des porteuses sur des bandes différentes : Classe C

 

 

Figure 3.3. Différentes classes pour le CA

 

La spécification R.10 propose 6 classes différentes pour l’agrégation de porteuses, mais seules 3 d’entre elles (Classe A, Classe B et Classe C) sont définies. Chaque classe indique le nombre de CC dans la classe (CC est soit la PCC et/ou la/les SCC) et le nombre maximum de PRB gérés par l’UE dans cette classe.

Le tableau 3.2 résume les 6 configurations possibles :

Table 3.2. Configuration des UE pour l’agrégation de porteuses

A partir de cette table, lors de la procédure d’attachement l’UE informe le MME des bandes de fréquences et de la classe qu’il supporte pour le CA. Les bandes de fréquences sont numérotées selon le tableau 3.3 (liste non exhaustive) :

Table 3.3. Canaux de fréquences (extrait TS36.101 – Table 5.5.1)

Si l’UE supporte le CA intra-bande contigüe, il indique les porteuses supportées en ajoutant le lettre C, comme par exemple : CA_1C, CA_7C.

Si l’UE supporte le CA inter-bande sur 2 porteuses, il indique les porteuses supportées en ajoutant la lettre A comme par exemple : CA_1A_5A.

Si l’UE supporte le CA intra-bande non contigüe sur 2 porteuses, il indique les porteuses supportées en ajoutant la lettre A comme par exemple CA_1A_1A.

Les combinaisons possibles sont définies dans la 3GPP TS36.101 pour 2 bandes en classe A (R.10 et R.11), trois bandes en classe A et/ou classe C (R.12), 4 et 5 bandes (R.13). La liste des possibilités d’agrégation sur deux porteuses augmentent de la R.10 à la R.13.

Cela nécessite donc de nouvelles catégories de terminaux. La table 3.4 complète ainsi la table 3.1, en ne prenant en compte que le nombre de CC. D’autres paramètres tels que le nombre d’antennes pour le MIMO et la modulation sont à prendre en compte pour expliquer les débits annoncés.

Table 3.4. Nouvelles catégories de terminaux définies par la R.10

 

3.3.2 : Agrégation de porteuses en FDD-TDD

La spécification R.12 exploite les méthodes de multiplexage en fréquentielle et en temporelle. Ainsi, la PCell peut fonctionner en FDD avec l’UE et la SCell en TDD. Cela permet d’offrir la possibilité d’exploiter la bande des 3.5 GHz en TDD avec les autres bandes de l’opérateur. La 3GPP préconise l’utilisation des bandes en TDD sur une fréquence plus élevée que les porteuses en FDD

Cours IUT – Chap 1 (Part 2)

L’architecture du réseau de mobiles 4G

Suite de l’article précédent

1.2. L’architecture protocolaire

L’architecture protocolaire du réseau EPS est décrite à la figure 1.7 pour le plan de contrôle et à la figure 1.8 pour le plan utilisateur.

Figure 1.7. L’architecture protocolaire du plan de contrôle (1)

Figure 1.8. L’architecture protocolaire du plan utilisateur (1)

Le RAN (Radio Access Network) est l’interface entre le mobile UE et la station de base eNB. Le RAN fournit un ou plusieurs supports (bearers) radio pour transmettre les données (plan de transport) et des supports radios pour transmettre la signalisation. Les données sont transportées dans des DRB (Data Radio Bearer) et la signalisation dans des SRB (Signaling Radio Bearer).

La norme standardise les interfaces entre chaque entité de façon à pouvoir construire un réseau indépendant des équipementiers.

La signalisation NAS est transmise entre le mobile UE et l’entité MME via la station de base eNB. La signalisation NAS intervient dès que le mobile UE se connecte au réseau dans la procédure d’authentification.

1.2.1 L’interface LTE-Uu

Les couches de protocoles radios situées au niveau de la station de base eNB assument les fonctionnalités suivantes :

  • Couche RRC (Radio Resource Control) est responsable de toute la signalisation entre le mobile UE et la station de base eNB. Cela comprend les messages de configuration de la connexion, les rapports de mesures, les reconfigurations RRC (commande handover). Afin de simplifier les états du mobile, ce dernier est soit en mode de veille (RRC idle) soit en mode connecté au réseau (RRC Connected).
  • Couche PDCP (Packet Data Convergence Protocole) gère la sécurité (chiffrement des données et des commandes et intégrité des commandes), ainsi que la compression d’entête. Le protocole PDCP gère aussi la livraison en séquence des messages RRC et des paquets IP et la reprise des trames PDCP perdues ainsi que la suppression des trames dupliquées lors du
  • Couche RLC (Radio Link Protocol) gère la retransmission de trames en cas d’échec sur la couche physique et le séquencement des trames. La fonction de retransmission du RLC est désactivée pour certains services comme la VoLTE pour ne pas retarder la transmission. Dans ce cas, le RLC se limite à ré-ordonner les paquets.

Le protocole RLC opère dans trois modes :

  • le mode avec acquittement AM (Acknowledged Mode) ;
  • le mode sans acquittement UM (Unacknowledged Mode) ;
  • le mode transparent TM (Transparent Mode) pour lequel aucune en-tête n’est rajoutée aux données.

La couche RLC effectue les opérations suivantes :

  • la retransmission en cas d’erreur via le mécanisme ARQ (Automatic Repeat reQuest), uniquement pour le mode avec acquittement ;
  • la concaténation, la segmentation et le réassemblage des trames PDCP, dans le mode avec ou sans acquittement ;
  • la resegmentation éventuelle des trames PDCP, dans le mode avec acquittement, lors d’une retransmission de la trame RLC ;
  • la remise en séquence des données reçues, dans le mode avec ou sans acquittement ;
  • la détection des données dupliquées, dans le mode avec ou sans acquittement.

Le couche MAC (Medium Access Control) couvre les fonctions relatives aux contrôles des transmissions et réceptions discontinues, la gestion du Timing Advance, la gestion d’ordonnancement des paquets et de la retransmission (TTI Bundling), la gestion du buffer du mobile UE et la gestion de la boucle de puissance PHR  (Power Headroom Reporting).

Le couche MAC assure les fonctions suivantes :

  • le multiplexage des canaux logiques provenant de différentes instances RLC dans un bloc de transport ;
  • l’allocation de la ressource via un mécanisme d’ordonnancement ;
  • la gestion de la retransmission en cas d’erreur via le mécanisme HARQ (Hybrid Automatic Repeat request). La méthode HARQ n’est pas applicable pour les transmissions en broadcast;
  • la gestion de la procédure d’accès aléatoire.

Le canal logique est défini par le type d’information à transmettre :

  • BCCH : Broadcast Control Channel transmet les informations systèmes (SI).
  • CCCH : Common Control Channel transmet les informations de contrôles.
  • PCCH : Paging Control Channel permet de notifier l’UE d’une session entrante.
  • DCCH : Dedicated Control Channel transporte les informations de contrôles d’établissement de session.
  • DTCH : Dedicated Transport Channel transporte les données utiles.

D’autres canaux logiques de Multicast et de broadcast existent en complément à liste ci-dessus ainsi que des canaux physiques permettant la synchronisation des mobiles UE :

  • PSS/SSS : Primary/Secondary Synchronization Signal
  • RS : Reference Signal

La couche MAC multiplexe les canaux dans des blocs de transports TB (Transport Bloc). A chaque TTI (Transmission Time Interval), un ou plusieurs TB sont transmis sur l’interface radio LTE-Uu. La couche MAC de la station de base eNB gère l’ordonnancement des TB sur le sens montant et descendant toutes les 1 ms (TTI).

La couche physique de l’interface LTE-Uu met en œuvre les fonctions suivantes : le code de correction et de détection d’erreurs, le multiplexage des canaux physiques, la modulation et l’amplification du signal. Nous détaillerons la structure de la trame radio dans le chapitre 2.

1.2.2. L’architecture protocolaire du cœur du réseau

L’objectif du cœur réseau est de monter un tunnel DATA dont la qualité de service dépend de l’application et du forfait de l’utilisateur. La signalisation 4G correspond au plan de contrôle et gère entre autre la mise en place de support (bearers).

L’établissement ou le ré-établissement du tunnel est prise en charge par le plan de contrôle.

Un tunnel par défaut est établi lorsque le mobile UE s’allume (lors de la procédure d’attachement). L’opérateur authentifie le mobile UE et vérifie ses droits. Cela nécessite un échange de signalisation entre l’entité MME et l’entité HSS. L’interface S6a est le point de référence entre les entités MME et HSS. Cette interface supporte la signalisation DIAMETER. Le protocole DIAMETER permet à l’entité MME de récupérer les données d’authentification et le profil de service du mobile.

Une fois authentifié, le client pourra exploiter le réseau opérateur dans le cadre imposé par son forfait. L’opérateur mesure la volumétrie consommée en temps réel par le client. En cas de dépassement de forfait, l’entité PCRF limite le trafic (fair use) au niveau de la passerelle de sortie PGW. L’interface Gx est le point de référence entre l’entité PCRF et la fonction PCEF de l’entité PGW Cette interface supporte la signalisation DIAMETER. Le protocole DIAMETER permet à l’entité PGW de récupérer les règles à appliquer sur le support et d’informer l’entité PCRF de la terminaison de la session sur le réseau EPS

Lorsque la station de base eNB reçoit une requête pour une session Data de la part du mobile UE, il transmet cette requête à l’entité MME via l’interface S1-MME.  L’interface S1-MME est le point de référence entre les entités MME et eNB pour la signalisation. Cette interface supporte la signalisation S1-AP (Application Part).

L’entité MME traite la demande et transmet l’ordre de création d’un contexte pour gérer le tunnel à l’entité SGW puis à l’entité PGW. L’interface S11 est le point de référence entre les entités MME et SGW. Cette interface supporte la signalisation GTPv2-C (GPRS Tunnel Protocol Control).

Le protocole S1-AP assure les fonctions suivantes : l’établissement du contexte du mobile, l’établissement, la modification et la libération du support E-RAB (EPS Radio Access Bearer) construit entre le mobile et l’entité SGW, la gestion du handover, le paging.

Le protocole GTPv2-C supporte les fonctions suivantes : la gestion du contexte du mobile et du support S1, la notification de données entrantes lorsque le mobile est en veille.

L’interface S1-U est le point de référence entre les entités eNB et SGW. Cette interface supporte la tunnelisation GTP-U (GPRS Tunnel Protocol User) du paquet IP du flux.

L’interface S5 est le point de référence entre les entités SGW et PGW. Cette interface supporte la signalisation GTPv2-C pour le plan de contrôle, et la tunnelisation GTP-U du paquet IP du flux.

L’interface S8 est le point de référence entre l’entité SGW du réseau visité et l’entité PGW du réseau nominal. Cette interface supporte les mêmes protocoles que l’interface S5.

Dans le cas de Handover, d’une cellule vers une autre cellule, le trafic est routé via l’interface X2. L’interface X2 est le point de référence entre deux entités eNB. Elle est activée lorsque les deux entités eNB appartiennent au même groupe.

L’interface X2 supporte la signalisation X2-AP pour le plan de contrôle (figure 1.9), et la tunnelisation GTP-U, pour le paquet IP du flux, lorsque le mobile change de cellule (figure 1.10).

Figure 1.9. L’architecture protocolaire sur l’interface X2: le plan de contrôle (1)

Figure 1.10. L’architecture protocolaire : le plan de trafic
lors d’une mobilité basée sur l’interface X2 (1)

Le tunnel établi entre les deux stations de base eNB est unidirectionnel (eNB source vers eNB cible). Il permet de transférer vers l’entité eNB cible les données de trafic reçu de l’entité SGW. Il est établi temporairement, pendant la durée du handover du mobile.

Si le handover nécessite un changement d’entité MME, la signalisation est transmise de l’entité MME source vers l’entité MME cible via l’interface S10. L’interface S10 est le point de référence entre les entités MME. Cette interface est utilisée lorsque le mobile change de groupe et que l’entité MME doit être relocalisée. Cette interface supporte la signalisation GTPv2-C.

Références

1 : Livre LTE-Advanced Pro

IAB – Cas d’usage

Les explications techniques du réseau de liaison terrestre et d’accès intégrés ont été partiellement présentées dans les trois articles précédents.

Cette article reprend l’illustration de SAMSUNG : Différentes zones urbaines sont couvertes par le mécanisme de relais IAB.

Le réseau de liaison terrestre et d’accès intégré IAB – Integrated Access Backhaul (part 3)

Cet article est le troisième et dernier traitant de l’IAB. Si besoin, n’hésitez pas à relire le premier article et le second.

III) Les mécanismes de routage IAB

III-1) Les entités BAP de la fonction DU et de la fonction MT

Le réseau d’accès IAB est constitué d’un ensemble de nœud IAB IAB-node, et d’une topologie de routage définie par un graphe orienté acyclique (DAG : Directed Acyclic Graph). Ainsi, plusieurs routes peuvent exister entre deux nœuds. La topologie peut ainsi être exploitée pour fiabiliser le routage (en cas de d’échec de lien – backhaul link failure) ou pour équilibrer la charge.

La sélection de la route et l’optimisation doit s’effectuer à chaque fois qu’un nouveau nœud IAB se connecte ou lorsque la topologie du réseau change.

Lorsqu’un nouveau nœud IAB intègre le réseau, l’unité Donor-CU attribue une adresse L2 unique (BAP Address).

Figure 9 : Configuration des instances de routage (Ericsson (1))

Au niveau du donneur IAB, la sous-couche BAP ne contient qu’une seule entité BAP.

Au niveau du nœud IAB, la sous-couche BAP contient une entité BAP sur la fonction MT et une entité BAP co-localisée sur la fonction DU.

La partie émettrice de l’entité BAP communique avec l’entité réceptrice de l’entité BAP.

L’entité réceptrice peut être située :

  • soit sur le même nœud
  • soit sur un autre nœud
  • soit sur l’IAB donneur.

Lorsqu’il est situé sur un autre nœud, la communication s’effectue à travers le lien backhaul.

Ainsi, la partie émettrice de l’entité BAP (Transmitting part) peut recevoir des unités de sessions de données SDU (Session Data Unit) des couches supérieures ou des données BAP PDU délivrées par l’entité BAP réceptrice co-localisée.

Figure 10 : Les fonctions de l’entité BAP (3GPP TS38.240)

L’entité BAP de réception supprime l’en-tête BAP du SDU et l’entité BAP de transmission rajoute l’en-tête BAP avec le même identifiant de routage BAP ID porté par l’en-tête du PDU avant d’être supprimée.

Au niveau de la fonction MT, la partie émettrice de l’entité BAP peut recevoir des BAP SDU des couches supérieures ou des paquets provenant de (et reçu par) l’entité BAP de la fonction DU du même nœud IAB ce qui lui permet de construire le paquet BAP PDU.

Au niveau de la fonction DU :

  • la partie émettrice de l’entité BAP d’un nœud IAB peut recevoir des paquets qui ont été réceptionnés par la partie réceptrice de l’entité BAP de la fonction MT situé sur le même nœud IAB afin de construire le paquet BAP PDU.
  • la partie émettrice de l’entité BAP d’un donneur IAB reçoit les BAP SDU des couches supérieures.

La partie émettrice de l’entité BAP doit :

  • à la réception d’un SDU (couche supérieure) :
    • sélectionner une adresse BAP et une identité de chemin BAP pour créer l’en-tête ;
    • construire le PDU.
  • à la réception d’un PDU (entité BAP de même niveau):
    • réaliser le routage vers le prochain saut ;
    • définir le canal RLC du lien backhaul de sortie.

 

3.2) Les mécanismes de routage

Dans le cas ou plusieurs chemins permettent de transmettre un paquet IP entre le nœud IAB de terminaison et le nœud donneur IAB, des Identifiants de route ID sont associés. L’unité donneur Donor-CU configure alors une table de routage indiquant le prochain saut pour chaque direction UL/DL en fonction de l’identifiant de route. La table de routage sépare la direction DL et UL, la table DL est utilisée par le module DU et la table UL est utilisée par le module MT.

 

Lorsqu’un paquet IP doit être transmis, le nœud à l’origine (le nœud donneur IAB IAB-donor pour le sens descendant ou le nœud IAB pour le sens montant) rajoute un en-tête BAP comprenant l’adresse L2 du nœud d’origine, l’adresse L2 du nœud de destination et optionnellement (si plusieurs chemins existent) l’identifiant du chemin.

Lorsque l’entité RLC du nœud IAB reçoit plusieurs trames en direction d’un même nœud, l’entité RLC peut multiplexer l’ensemble des trames (correspondance N :1) ou transmettre les trames 1 à 1. La correspondance N :1 est un multiplexage de plusieurs bearer radio dans un seul canal RLC à condition que tous les bearers radio aient les mêmes profils de QoS. La correspondance N :1 permet de transmettre moins de canaux RLC et réduit les en-têtes à rajouter.

La correspondance 1 :1 permet de transmettre des bearers radio dans des canaux RLC spécifique afin de prendre en charge la QoS à appliquer pour chaque bearer.

Figure 11a: La correspondance 1 :1

Figure 11b: La correspondance N :1

IV) Conclusion

La solution IAB a pour objectif de réduire le coût de déploiement de nouvelles stations de base principalement pour les antennes relais dans les bandes millimétriques dans les zones très denses. Toutefois, la solution IAB permet également de densifier le déploiement de nœuds radioélectrique dans le cadre des services V2X (exemple le long des routes/autoroutes).

Figure 12 : Un exemple de déploiement le long d’une autoroute

Enfin, le nœud IAB peut également être mobile (camion) pour mettre en place une infrastructure évènementielle.

 

Références

 

Le réseau de liaison terrestre et d’accès intégré IAB – Integrated Access Backhaul (Part 2)

Cet article est la suite de l’article :

Le Réseau de liaison terreste et d’accès intégré

II) L’Architecture IAB (Integrated Access Backhaul)

L’architecture IAB (figure 5) permet la connexion entre le mobile UE et le nœud radioélectrique par une connexion radioélectrique 5G multi-sauts entre les nœuds IAB.

On appelle IAB-donor la station de base connectée au cœur de réseau (en général une macro-cell) et le nœud-IAB, une station de base permettant le relai entre le mobile et l’IAB-donor.

On distingue deux types de lien, le lien d’accès et le lien backhaul (Integrated Access and Backhaul) :

  • Le lien d’accès est le lien entre le terminal UE et l’antenne relais nœud IAB (IAB-node). Traditionnellement, dans un contexte hors-IAB, ce lien représente la connexion radioélectrique entre le mobile et la station de base.
  • Le lien backhaul est le lien entre un nœud IAB parent et un nœud IAB fils. Il peut s’agir d’une connexion radioélectrique entre un nœud IAB-donor et le nœud IAB ou entre deux nœuds IAB.

Le nœud IAB parent est responsable du séquencement du trafic DL/UL s’établissant à la fois sur le lien d’accès et sur le lien backhaul.

Le nœud IAB fils en tant que dernier maillon de la chaine de transmission est responsable du séquencement de trafic DL/UL entre le nœud IAB et le mobile UE.

Les fonctionnalités de l’IAB sont gérées par deux nouvelles entités réseaux : nœud donneur IAB (IAB-Donor) et un nœud IAB (IAB-node). Chaque nœud IAB a une adresse IP qui est routable par la station de nœud donneur IAB-donor.

Figure 5 : Architecture IAB

Chaque nœud IAB gère deux modules de transmission (figure 6) : un module MT (Mobile Termination) et un module DU.

  • Le module MT maintient la connexion radioélectrique backhaul montante vers un nœud parent (nœud IAB-Donor ou un nœud IAB-node) ;
  • Le module DU fournit l’accès radioélectrique au mobile et assure la connexion radioélectrique backhaul descendante en provenance d’un autre nœud IAB ou du nœud IAB-donor.

Le nœud donneur IAB-donor est un gNB, il gère les deux unités  CU et DU. Il fournit l’accès au cœur de réseau via le réseau backhaul et le réseau d’accès radioélectrique.

Comme tout gNB, le noeud IAB-donor est constitué d’un seul IAB-donor-CU et d’un ou plusieurs IAB-donor-DU, connecté l’un et l’autre via l’interface F1.

Le noeud IAB-donor est connecté au nœud IAB-node par l’interface NR.

Figure 6 : Architecture CU/DU de la solution IAB

Le nœud IAB-node se connecte en amont à un nœud IAB-node ou à un nœud IAB-donor en exploitant les fonctionnalités UE. Ainsi, le nœud IAB-node :

  • est perçu comme l’entité gNB-DU pour les terminaux. Il est ainsi sous le contrôle du gNB-CU du nœud donneur ;
  • supporte une partie des fonctionnalités des terminaux UE (fonctionnalités IAB-MT).

Le nœud IAB-Donor :

  • est perçue comme l’entité gNB-CU par rapport au nœud IAB-node ;
  • gère les fonctionnalités RRC/PDCP en complément du MT.

Toutes les fonctions spécifiées pour un gNB-DU sont également appliquées pour un IAB-node-DU et toutes les fonctions spécifiées pour le contexte UE sont également utilisées dans la gestion du contexte de l’IAB-MT.

Le nœud IAB-Node doit avoir une adresse IP pour le plan de contrôle (F1-C) et pour le plan de trafic (F1-U).

La pile protocolaire est similaire à celle de la station de base gNB avec l’ajout d’une sous-couche d’adaptation BAP (Backhaul Adaptation Protocol) située au-dessus de la couche RLC.

Sur l’IAB-donneur-DU, la sous-couche BAP contient une seule entité BAP.

Sur le nœud IAB, la sous-couche BAP contient une entité BAP au niveau de la fonction MT et une entité BAP colocalisée distincte à la fonction DU.

Chaque entité BAP a une partie émettrice et une partie réceptrice. L’entité BAP a pour rôle d’apporter les informations de routage de flux et d’autoriser la transmission multi-sauts. La table de routage est fournie par l’entité gNB-CU via le message BH Routing Configuration.

Les fonctions de la couche d’adaptation BAP permettent :

  • de gérer efficacement le transfert multi-sauts (lien backhaul) ;
  • de router les paquets vers le prochain nœud via la topologie backhaul ;
  • de contrôler les flux de la signalisation.

Figure 7 : L’architecture protocolaire IAB

Le nombre de saut n’est pas limité, il est néanmoins nécessaire de s’assurer du respect des contraintes de latence.

Le donneur IAB-donor assigne une adresse de niveau 2 (adresse BAP) à chaque nœud IAB qu’il contrôle. En cas de plusieurs chemins, plusieurs identifiant de route peuvent être associés à chaque entité BAP. L’entité BAP du nœud d’origine (IAB-donor DU pour le trafic DL, et le nœud d’accès IAB pour l’UL) ajoutera un en-tête BAP aux paquets que chacun transfère. Cet en-tête comprend un identifiant ID de routage BAP (par exemple, l’adresse BAP du nœud IAB de destination / source et un ID de chemin facultatif).

Chaque nœud IAB met en place une table de routage qui est configurée par l’unité CU du donneur IAB (message BH Routing Configuration). Cette table contient l’identificateur de saut suivant pour chaque ID de routage BAP.

Figure 8 : Le transfert IAB

 

 

Le réseau de liaison terrestre et d’accès intégré IAB – Integrated Access Backhaul

Introduction

Le réseau d’accès radioélectrique NG-RAN est composé de nœuds radioélectriques permettant la transmission de flux à très haut débit. Selon la spécification TS 38.300, le nœud NG-RAN peut être une station de base gNB (avec une interface radioélectrique 5G-NR) ou une station de base ng-eNB (avec une interface radioélectrique 4G-LTE).

Pour apporter plus de flexibilité et optimiser le transport de données à très haut débit, la spécification 3GPP TS 38.804 propose une division fonctionnelle des éléments de la BBU en deux unités CU et DU.

Un nœud gNB (ng-eNb) est composé d’une unité centrale (CU, Central Unit), et d’un ensemble d’unités distribuées (DU, Distributed Unit) et d’unité radio RU (Remote Unit) ou AAU (Activa Antenna Unit). Certaines fonctions de la couche physique de bas niveau peuvent être détachées du DU et implémentées dans une unité radio distante (RU, Remote Unit).

L’interconnexion entre les différentes entités (coeur de réseau, CU, DU et tête radioélectriques) sont assurées par des liens en fibre optique.

Le réseau de transport 5G est constitué de 3 segments :

  • le backhaul est la liaison entre le CU et le cœur du réseau (5GC). Il est généralement implémenté à l’aide des technologies de transport optique à très haut débit de type WDM (Wavelength Division Multiplexing) ;
  • le midhaul entre le CU et le DU. La liaison midhaul est une liaison IP/Ethernet qui transporte le trafic de données (F1-U) et de signalisation (F1-C) de l’interface F1;
  • le fronthaul entre le DU et le RU via le déploiement des réseaux optiques ODN (Optical Distribution Network) ou FTTH (Fiber To The Home).

Dans les zones denses, pour éviter la saturation des stations de base, l’opérateur doit rajouter des points de transmission. La multiplication des unités radio distante nécessite le déploiement d’une infrastructure en fibre optique (RoF : Radio Over Fiber). Pour simplifier le déploiement de nouveaux points de transmission, la 3GPP propose la solution de relais radioélectrique IAB (Integrated Access Backhaul).

Dans cet article, nous allons détailler le déploiement de relais par la mise en place d’une lien radioélectrique backhaul entre la station de base initiale et les relais.

  1. Architecture gNB

Le nœud NG-RAN est constitué de deux unités : une unité centralisée CU (Centralized Unit) et une unité distribuée DU (Distributed Unit). L’une et l’autre communiquent par une interface F1.

L’unité gNB-CU contrôle plusieurs unités DU et une unité DU n’est contrôlée que par une seule unité CU.

De par la décomposition fonctionnelle entre les données de signalisation (control plane) et les données de trafic (user plane), une station de base peut être constituée :

  • pour l’unité CU : d’un unique gNB-CU-CP et de plusieurs gNB-CU-UP ;
  • pour le module DU, de plusieurs gNB-DU.

Figure 1 : Architecture d’un nœud NG-RAN

L’organisme de normalisation 3GPP propose plusieurs découpages fonctionnels entre les entités gérées au niveau de l’unité CU et celles gérées au niveau de l’unité DU. La figure 1 correspond à l’option 2. La figure 2 présente les 8 découpages possibles.

Figure 2 : Les options de découpage CU/DU

Cette décomposition apporte un nouveau lien entre l’unité CU et l’unité DU. Ce lien est nommé midhaul.

L’organisme de normalisation 3GPP a retenu dans un premier temps (R.15) l’option 2 avec l’introduction de l’interface F1 sur le lien midhaul entre les unités DU et CU.

Figure 3 : Le découpage fonctionnel de la station de base (Nokia)

Le lien fronthaul est la connexion entre l’unité de bande de base (BBU) et la tête radioélectrique déportée (RRH). Ce lien s’appuie sur une connexion en fibre optique. Différents protocoles d’interfaces de réseau fronthaul ont été spécifiés comme le protocole OBSAI et le protocole CPRI. Le protocole CPRI est apparu en 2003 pour connecter les stations de bases BBU aux têtes radioélectriques déportées RRH. Le lien CPRI est mis en œuvre pour l’interconnexion entre le RRU et le BBU 4G et 5G-NSA. Il s’agit de l’option 8.

L’arrivée de nouvelles technologies antennaires comme le massive MIMO permet d’augmenter considérablement les capacités de transport sur l’interface CPRI. Pour réduire cette forte augmentation en débit, le protocole eCPRI, défini en 2017, réduit cette tension en débit de transmission grâce à une décomposition fonctionnelle plus flexible de la partie BBU. Le protocole eCPRI identifie trois plans nécessaires à l’interaction entre l’équipement radioélectrique eRE et l’équipement de contrôle eREC. Ces trois plans sont les suivants : le plan utilisateur, le plan de synchronisation, et le plan de contrôle et gestion. La synchronisation est essentielle pour le mode de duplexage temporel.

La flexibilité est aussi apportée par les fonctions de virtualisation réseau NFV. Les 8 options peuvent facilement se déployer par la virtualisation de l’accès radioélectrique (V-RAN) : Les entités fonctionnelles de l’unité DU et/ou de l’unité CU peuvent être intégrées à l’entité physique RU, l’entité physique DU peut être combinée à l’entité physique CU, ou bien chaque entité matérielle peut fonctionner de manière indépendante à des emplacements séparés. Dans chacun de ces cas, le backhaul fournit toujours le lien établissant la connexion au backbone.

Le terme crosshaul (ou x-haul, ou xhaul) désigne indépendamment lien fronthaul, midhaul ou backhaul.

Figure 4 : Différentes options du découpage fonctionnel de la station de base

En Juin 2018, l’alliance O-RAN a été créée pour standardiser l’interconnexion des différentes interfaces en fonction des 8 découpages proposés. Le but est de permettre la migration des entités du réseau d’accès radioélectrique indépendamment du ou des fournisseurs.

Si la fibre optique est le média de transport favorisé, la densification des stations de base consécutive à l’exploitation des bandes millimétrique pose le problème de connectivité entre les nouvelles antennes et le cœur de réseau.

Pour résoudre ce problème et pour réduire les couts de déploiement (CAPEX), le standard 3GPP propose (dans la spécification R.16) la mise en place d’une solution de connectivité IAB (Integrated Access Backhaul), se substituant ainsi à la solution sur Fibre Optique pour le réseau d’accès.

 

 

 

 

E2E Network Slicing : le découpage du réseau de bout en bout (Partie 1)

Le découpage du réseau (Network Slicing)

Au cours de cet article, nous allons décrire plus précisément le découpage du réseau de mobiles en reprenant plusieurs articles précédents sur la virtualisation et la programmation du réseau (NFV/SDN).

La vision du NFV dans cet article reprend les travaux de l’organisme de spécification ETSI et les fonctionnalités du SDN s’appuie sur le travail de l’ONF.

Ainsi, le SDN est vu comme un contrôleur de tranche de réseaux et un contrôleur du plan de transport, et le NFV gère l’allocation des ressources virtuellement (déploiement, dimensionnement et relachement).

Je remercie Antoine Mouquet (Expert 3GPP – Orange), Nicolas Bihannic (Chercheur Orange Labs) et le professeur Adlen Ksentini (Eurecom Sophia Antipolis) pour les échanges qui ont permis d’améliorer considérablement cet article.

Le déploiement d’un réseau 5G s’effectue en deux étapes :

  • La première étape est le déploiement d’un accès radioélectrique 5G. La 5G-NSA est la 5G non autonome. Pour le déploiement à venir (5G NSA option 3), le cœur de réseau est le réseau 4G (EPC) et l’accès radioélectrique 5G est contrôlé par une station de base 4G grâce au mécanisme de double connectivité ;
  • La deuxième étape est nommée 5G-SA, il s’agit de la 5G autonome. Le cœur de réseau est entièrement 5G permettant ainsi d’apporter de la souplesse du cœur de réseau en exploitant la virtualisation des fonctions réseaux.

Le découpage du réseau s’appuie sur la virtualisation du cœur de réseau et la virtualisation de l’accès radioélectrique. Le découpage de réseau est la solution permettant d’apporter une qualité de service spécifique (SLA : Service Level Agreement) pour les utilisateurs en fonction des usages suivants :

  • les usagers de smartphone ;
  • les entreprises ;
  • des processus verticaux (IoT) ;
  • le marché de gros (wholesale business).

L’objectif de cet article est d’expliquer le fonctionnement du découpage du réseau (network slicing). Ce découpage doit nécessairement être mis en œuvre pour pouvoir répondre aux exigences des différents services auxquels la 5G souhaite répondre. La spécification 3GPP a normalisé à ce jour 4 catégories : smartphones (eMBB), les terminaux IoT (mMTC), les communications critiques (URLLC), les véhicules connectés (autonomes : V2X), mais les opérateurs peuvent mettre en œuvre d’autres fonctionnalités dédiées.

L’article est décomposé en quatre parties techniques :

  1. la description d’un réseau basé sur les services et identifications des services ;
  2. la description d’une tranche de réseau et mise en œuvre de la virtualisation ;
  3. la virtualisation du cœur de réseaux ;
  4. la virtualisation de l’accès radioélectrique.

En conclusion, nous reviendrons sur la virtualisation des fonctions du réseau et l’avantage de cette architecture.

I) Un réseau basé sur les services (SBA : Service Based Architecture)

Le réseau de 5ème génération est avant tout un réseau cellulaire devant assurer la continuité des services offerts par le réseau de mobiles 4G. Il est ainsi conçu pour répondre aux exigences des smartphones à très haut débit, et aux exigences du marché des objets connectés.

Toutefois, le réseau de mobiles 5G s’ouvre également à des applications nécessitant des latences faibles pour des communications critiques avec une convergence des marchés PMR (Private Mobile Radio), et des offres TETRA, GSM-R (voir la spécification FRMCS : Future Railway Mobile Communication System).

L’un des objectifs des spécifications 5G est de définir un déploiement automatique de fonctions réseaux afin de répondre aux différentes exigences à respecter (KPI : Key Performance Indicator) spécifique à chaque type de services à mettre en œuvre. La stratégie est de réduire le délai de la mise sur le marché d’un service Tiers players. On parle ainsi de services verticaux et pour identifier les besoins, nous allons dans un premier temps lister de manière non exhaustive un panel de secteurs :

  • La réalité augmentée et la réalité virtuelle : l’humain interagit avec son environnement nécessitant une latence de 7 à 15 ms, un débit de 250 Mbps (3D/ 12k) à 2.34 Gbps pour de la 3D 24 k et une perte de paquets de 10-6; Le Wi-VR (Weak Interactive VR) peut nécessiter une latence RTT de 10 ms (Ultimate VR) ;
  • Le secteur de l’automobile avec des connectivités pouvant gérer des services de loisir (Infotainment), de télématique (IoT), de sécurité routière (partage d’informations, assistance à la conduite, conduite coopérative, gestion d’une file de camions (platooning), opération à distance) ;
  • Le secteur de l’énergie et du smart-grid (latence < 10 ms, disponiblité de 99,999% et un TEB de 10-9) ;
  • Le secteur de la santé (tracking de patient ou de matériel, soin à distance, soin en urgence) avec le téléchargement d’imagerie radio jusqu’à la télé-chirurgie ;
  • Le secteur de l’industrie 4.0 (smart factory) : automatisation du processus de fabrication, logistiques, maintenance prédictive, systèmes cyber-physiques (C2C : Control To Control Communication), robots mobiles;
  • Le secteur de l’IoT avec la technologie LPWAN qui permet à titre d’exemple la gestion des déchets, le suivi des mobiles, la mesure de consommation (gaz, électricité, eau, …), la détection de fuite, le parking intelligent ;
  • La sécurité publique (Push To Talk, vidéo, …) répondant aux exigences du réseau TETRA;
  • Le secteur du smart-cities (lampadaire intelligent, sécurité publique par détection de bruit).

La liste est non exhaustive, et chaque service nécessite des caractéristiques que l’on peut résumer avec les critères suivants :

  • latence ;
  • débit ;
  • sécurité de la communication;
  • mobilité ;
  • localisation ;
  • accessibilité ;
  • disponibilité ;
  • résilience ;
  • densité de connexion.

Les indicateurs de performance doivent être respectés au niveau du cœur de réseau et de l’accès radioélectrique.

Figure 1 : Des exemples de services 5G

II) Description d’une tranche de réseau et mise en œuvre de la virtualisation

II-1) Définition

La spécification 3GPP défini :

  • Un modèle d’une tranche de réseau (Network Slice Template). Le NST est une description complète d’une tranche de réseau en listant les fonctions virtuelles, les ressources matérielles nécessaires pour chaque fonction en vue de gérer le plan de trafic de bout en bout. Ce modèle sert de référence pour instancier une tranche de réseau ;
  • Une instance de tranche de réseau (NSI : Network Slice Instance) correspond aux entités du réseau de mobile qui répondent aux indicateurs de performances demandés par le support opérationnel et fonctionnel (OSS/BSS). Une entité est une ressource matérielle et une fonction logicielle déployée au moment de la création de l’instance. Afin de simplifier le réseau de mobile, chaque instance se décompose de sous-instance (SNI : Sub Network Instance) qui sont partagées. Ainsi, une instance de tranche de réseau est composée d’une sous-instance RAN (Radio Access Network), d’une sous-instance de cœur de réseau 5G CN (Core Network). Une sous-instance SNI peut appartenir à plusieurs instances de tranche de réseau ;
  • Un support opérationnel et de supervision. Afin de s’assurer que les indicateurs de performances soient respectés à tout instant, la tranche de réseau (NS : Network Slice) contrôle l’instance de tranche de réseau (NSI) à partir de fonctions de gestion et de supervision. La supervision permet d’alerter le contrôleur si les performances se dégradent et le contrôleur va pouvoir gérer de nouvelles entités ou mettre à l’échelle une ou plusieurs entités (scalability and elasticity).

La supervision d’une tranche de réseau est essentielle pour valider la qualité de service (QoS) et le respect des indicateurs de performance.

L’isolation opérationnelle de chaque tranche permet aux utilisateurs verticaux (OTT ou entreprise) de pouvoir configurer, superviser, contrôler leur tranche de réseau de manière indépendante.

L’isolation au niveau du réseau signifie que les clients verticaux ont des ressources dédiées. La description des slices permet à un utilisateur de profiter de fonctions réseaux dédiées et d’un accès radioélectrique partagé. Le client étant ici le demandeur de service auprès d’un opérateur, et l’utilisateur est celui qui utilise le service en bout de chaîne (terminal).

L’isolation opérationnelle permet donc de partager des ressources matérielles et logicielles comme des hébergeurs de cloud, en isolant les fonctions réseaux entre elles.

L’isolation au niveau réseau (figure 2) permet de proposer des ressources dédiées, à la fois au niveau du cœur de réseau, mais également au niveau de l’accès radioélectrique (RAN dédié). Des applications comme la sécurité civile ou le smart-grid peuvent nécessiter une isolation du réseau. Les réseaux PNI-NPN (Public Network Integrated Non-Public Network) sont des réseaux dédiés dont l’accès radioélectrique peuvent être partagés avec le réseau PLMN.

Figure 2 : Les ressources dédiées ou partagées du réseau de mobiles 5G

A l’instar des solutions portées par les hébergeurs cloud, il n’est pas nécessaire de déployer une tranche de réseau (slice) par client vertical, mais de partager le slice entre plusieurs clients.

II-2) Gestion d’une NSI (Network Slice Instance)

L’instance est mise en œuvre à partir d’un gabarit et la procédure de déploiement et d’activation d’un slice est défini par les étapes suivantes (figure 3, 3GPP SA5).

Figure 3 : Gestion d’un slice. De l’activation à la désactivation

La procédure (figure 3) met en œuvre les entités du réseau de mobiles 5G en gérant la durée de vie des instances à partir des fonctionnalités NFV décrites par l’organisme ETSI (se référer à l’article : http://blogs.univ-poitiers.fr/f-launay/tag/5g-nfv/).

Une tranche de réseau NSI peut contenir des fonctions réseaux physiques (PNF : Physical Network Function) ou virtuelles (VNF : Virtual Network Function).

Le réseau de transport n’est pas défini dans le cadre du travail de l’organisme 3GPP.

II-3) La virtualisation des fonctions du réseau

La figure 4 rappelle l’architecture système pour la mise en œuvre de fonctions virtuelles.

Figure 4 : L’architecture ETSI NFV

On identifie 3 groupes :

Le premier groupe est le système de gestion des réseaux de mobiles. Il est composé :

  • d’un support système OSS (Operation Support System). Le support OSS est une suite logicielle permettant d’administrer le réseau opérateur et de superviser les ressources. Le support OSS maintient un inventaire des entités réseaux, provisionne des services, configure les entités et récupère les éléments de supervision de chaque entité réseau ;
  • d’un support commercial (Business Support System). Le support BSS gère le déploiement de services à la demande des clients. Il offre ainsi les outils logiciels pour gérer les commandes jusqu’à la mise en paiement des services.
  • D’un support de gestion et de supervision (EM/DM). La gestion EM/DM permet de contrôler et de superviser les fonctions virtuelles et les ressources matérielles.

Le deuxième groupe est le système de gestion et d’orchestration des ressources matérielles et virtuelles (NVF – MANO : Management and Orchestration). Il a pour rôle :

  • sous l’ordre du support système OSS, l’orchestrateur MANO ordonne le déploiement ou la libération de fonctions virtuelles en respectant les contraintes matérielles inhérentes à chaque fonction ;
  • de superviser le bon fonctionnement des fonctions logicielles et des ressources matérielles allouées ;
  • de contrôler le déploiement de machines virtuelles ou de containeurs, de vérifier l’allocation de ressources et de libérer les ressources ;
  • de conserver des contextes sur les ressources utilisées, les ressources restantes, les images des fonctions virtuelles et les gabarits de chaque fonction virtuelle.

Le 3ème groupe correspond aux machines physiques et au déploiement des instances, ainsi que les fonction de routage.

II-4) Le système de gestion des réseaux de mobiles

II-4-1) OSS/BSS et NM

La phase de préparation est réalisée au niveau du support système OSS/BSS par la fonction Gestion de Réseau (NM : Network Management) via un contrôleur de slice. On peut trouver également l’acronyme NSMF (Network Slicing Management Function). Ce dernier soumet l’ordre à un orchestrateur (à travers le point de référence Os-Ma-nfvo) qui va pouvoir gérer l’infrastructure de virtualisation à partir du modèle de slice.

Le NSMF prend en charge le déploiement du end-to-end slice. On pourrait le nommer un end-to-end slice orchestrateur.

Le gestionnaire de réseau (NM) fourni les fonctions de gestion du réseau de mobiles, ce qui inclut les fonctions de virtualisation. Le NM supporte les fonctions de gestion FCAPS (fault, configuration, accounting, performance, security) du cœur de réseau 5GC et du réseau IMS. Il supervise le FCAPS spécifique pour maintenir et exposer le SLA.

Dans le cas de la gestion de slice, c’est le gestionnaire de réseau MN qui initie la gestion du cycle de vie de chaque fonction virtuelle (figure 3).

II-4-2) EM

Le gestionnaire d’élément (EM : Element Manager) est responsable de la gestion FCAPS au niveau d’un élément logiciel VNF (Virtual Network Function) ou d’un élément matériel (NE : Network Element). Les fonctions du gestionnaire d’entité correspondent à :

  • la gestion de fautes;
  • la gestion de la configuration ;
  • la gestion des éléments de facturation ;
  • la collection des mesures de performance à effectuer ;
  • la gestion des éléments de sécurité.

Un gestionnaire d’éléments peut gérer des fonctions virtuelles à travers des interfaces propriétaires. Un gestionnaire d’éléments peut aussi être une fonction réseau virtuelle.

 

II-4-3) NFV-MANO

II.4.3.1) NFVO

L’orchestrateur joue un rôle primordial :

  • Il gère l’orchestration de ressources : il coordonne l’attribution des ressources matérielles : l’orchestrateur autorise, met à l’échelle, libère les ressources physiques (NFVI : Network Function Virtualization Infrastructure) parmi l’ensemble des DataCenters (DC). Il ordonne les ordres au gestionnaire de ressource matérielle (VIM : Virtualized Infrastructure Manager) à travers le point de référence Or-Vi ;
  • Il gère l’orchestration de service : il contrôle l’établissement ou la libération d’une ou plusieurs fonctions virtuelles VNF en ordonnant l’ordre au gestionnaire VNFM via l’interface Or-Vnfm.
  • il gère la topologie des NSI (nommé VNF Forwarding Graph dans l’article : http://blogs.univ-poitiers.fr/f-launay/2018/02/04/network-functions-virtualisation-nfv-pour-le-reseau-4g5g/)

Pour gérer les services réseaux, l’orchestrateur s’appuie sur des catalogues de ressources définissant le gabarit souhaité :

  • Catalogue VNFD contient le descripteur de chaque instance VNF en terme de déploiement et de fonctionnement (pour la gestion FCAPS) ;
  • Catalogue de service permet de lister l’ensemble des fonctions VNF à cascader pour obtenir un sous réseau d’instances (SNI) ;
  • Catalogue NFVI contenant les ressources nécessaires pour mettre en œuvre un service NFV.

II.4.3.2) VNFM

Le gestionnaire VNFM (Virtual Network Function Manager) gère :

  • Le cycle de vie des fonctions virtuelles VNF : création, mise à l’échelle, maintenance et libération des instances VNF ;
  • Supervise et détecte les fautes (FCAPS) des fonctions virtuelles VNF.

Il expose :

  • une interface nord à l’orchestrateur à travers le point de référence Or-Vnfm ;
  • une interface sud pour injecter des règles au gestionnaire de ressource à travers le point de référence vi-Vnfm.

II.4.3) VIM

Une infrastructure matérielle est un serveur COTS hébergeant un hyperviseur. L’infrastructure est découpée en domaine, chaque domaine porte une VM ou un containeur.

Le gestionnaire VIM gère :

  • les ressources des infrastructures NFVI (stockage, CPU, carte réseau, …) d’un domaine ;
  • les ressources virtuelles (machines virtuelles et/ou containeur) du domaine ;
  • l’hyperviseur.

Ainsi, le gestionnaire VIM gère le cycle de vie des ressources virtuelles allouées à un domaine, conserve l’appairage entre la machine virtuelle et la machine physique, analyse via un agent les performances matérielles, logicielles et virtuelles et gère les performances et les fautes.

Il expose :

  • une interface nord à l’orchestrateur à travers le point de référence Or-Vi ;
  • une interface nord au gestionnaire de machine virtuelle VMF à travers le point de référence vi-Vnfm.

II.4.4) Pour aller plus loin

Il y a une différence entre le gestionnaire d’éléments (EM) et le gestionnaire de fonctions réseau virtuelles (VNFM) : Le gestionnaire d’éléments EM supervise la partie fonctionnelle du réseau de mobiles alors que le gestionnaire VNMF gère les entités virtuelles.

L’infrastructure NFVI est décomposée en plusieurs parties :

  • les ressources matérielles : CPU, mémoire RAM, carte réseau. Un commutateur (exemple TOR) et un élément de stockage fait également parti des ressources matérielles ;
  • la couche de virtualisation : Cette couche permet de faire abstraction des ressources matérielles en offrant des ressources logiques. Cette abstraction est réalisée par l’hyperviseur.

La suite dans un autre article.

 

 

 

 

Etablissement de la connexion radio – Partie 3 : La procédure

Nous allons maintenant étudier la procédure d’accès aléatoire.

Lorsque le terminal UE est en veille, il récupère les paramètres d’accès radio transmis par la station de base à travers les différents SIB. Les informations SIB sont diffusées dans la cellule sur des canaux communs. Notamment, le terminal UE prend connaissance du SIB2 mais aucune ressource radio spécifique lui est dédiée.

Pour obtenir des ressources dédiées le terminal utilise dans un premier temps des ressources communes à l’ensemble des terminaux pour contacter l’entité radio (nous traitons le cas en 5G avec l’entité gNb mais la procédure est identique pour les autres accès radio mobiles) et l’informer de sa demande. Les ressources PRACH étant accessibles à l’ensemble des terminaux, la procédure d’accès aléatoire doit être en mesure de détecter un conflit en cas de collision.

Pour limiter les collisions, la station de base propose un ensemble de préambules (64 maximum). Le terminal tire au hasard un préambule parmi la liste proposée (on parle d’accès aléatoire). Le préambule est une séquence de Zadoff-Chu définit par son index RAPID (Random Access Preamble ID, l’index fait une correspondance avec la racine de la séquence, se référer au premier article décrivant l’accès aléatoire).

Cependant, rien n’exclut l’hypothèse que deux terminaux UE choisissent séparément le même préambule au même moment et transmettent chacun leur demande sur des ressources fréquentielles identiques. On parle alors de collision.

La procédure est décrite par les échanges suivants :

msg1 : Le terminal UE envoie sa demande d’accès aléatoire en transmettant un préambule. Une fois le préambule émis, le terminal UE écoute la réponse de la station de base entre l’instant t1 et t2= t1+ Fenêtre_reception (T300)

msg2 : La station de base répond au terminal mobile UE en indiquant l’avance de temps (TA) que le terminal UE doit appliquer, et lui alloue des ressources radios pour le prochain message montant. La réponse est diffusée sur le canal commun à l’ensemble des terminaux via le canal PDCCH. Le CRC du message DCI est embrouillé par l’identifiant RA-RNTI. Lorsque le terminal UE décode le PDCCH avec son identifiant RA-RNTI, il lit le contenu diffusé dans le canal PDSCH.

msg3 : Le terminal UE envoie une unité de donnée MAC ou un message RRC avec une identité UE. Cet identifiant va permettre de résoudre les conflits.

msg 4 : La station de base gNB diffuse sa réponse en indiquant l’identité reçu du terminal dans sa reponse. Ainsi, en cas de conflit, le terminal pour lequel la réponse du gNb correspond à son identifiant a réussi son accès aléatoire, pour les autres la réponse msg4 est attendu jusqu’à l’expiration du temporisateur. Une nouvelle demande d’accès sera alors renouvelée dans la limite des demandes autorisées dans le message SIB2.

Figure 1 : Procédure d’accès aléatoire

Le terminal UE émet ses messages et attend les réponses dans des fenêtres temporelles définies par l’accès radio.

Figure 2 : Les temporisateurs de la demande d’accès

L’objectif est maintenant de comprendre :

  • comment la station de base est en mesure de détecter plusieurs requêtes d’accès aléatoire ;
  • comment s’effectue la résolution de conflit.

Nous partons sur l’hypothèse de 3 terminaux UE A, UE B et UE C qui envoient leur demande d’accès aléatoire au même moment et sur les mêmes ressources tempo-fréquentielles. Dans ce cas l’identifiant RA-RNTI pour chaque terminal est identique. On suppose de plus que les terminaux UE A et UE B choisissent le même préambule. Dans ce cas , il y a collision.

Figure 3 : Demande d’accès UE vers gNB

Les préambules 1 et 3 sont différents, cela signifie que les séquences de Zadoff-Chu transmises par les terminaux A et C (ou B et C) ne sont pas identiques. Comme les séquences sont orthogonales, l’entité gNB est capable de les détecter. Par contre, les séquences émises par les terminaux UE A et UE B sont identiques, la station de base ne détecte donc qu’un seul message (pensant qu’il s’agit de multi-trajets).

La station de base répond aux 3 terminaux simultanément. Les terminaux sont informés d’une réponse en décodant l’information DCI dans le canal PDCCH. Les terminaux vont ensuite lire le message RAR (Random Access Response) présent dans le canal PDSCH. Le contenu du message contient les préambules décodés par la station de base gNB :

Figure 4 : La réponse du gNB vers les terminaux (message RAR)

Les terminaux A et B enregistrent l’identifiant radio temporaire TC-RNTI1 avec le Timing Advanced mesurée par la station de base. Ce TA correspond évidemment à l’un des deux terminaux. Le terminal C enregistre sont identifiant temporaire C-RNTI3.

Pour lever la collision entre les terminaux A et B, chaque terminal envoie son message 3 (RRC SetupRequest) avec l’identifiant temporaire TC-RNTI1 et leur identifiant aléatoire comme identité de l’UE (UE-identity).

Figure 5 : Les terminaux acquittent le message reçu auprès de l’entité gNB

Dans l’exemple ci-dessus, la station de base gNB reçoit la réponse des terminaux A et B avec, pour chaque UE, une identité aléatoire UE-identity. Cette réponse permet à la station de base d’identifier le terminal A et le terminal B et de faire la correspondance avec l’identifiant radio temporaire TC-RNTI1. La station de base détecte ainsi la collision. Dans la procédure, la station de base répond au terminal qui envoie le msg 3 en premier et ignore les autres messages msg3 qui portent le même identifiant temporaire TC-RNTI1. Elle reçoit également le message du terminal C avec l’identifiant temporaire TC-RNTI3. Elle fait donc une correspondance entre l’identifiant radio temporaire TC-RNTI3 et le terminal C UE-identity. Il n’y a pas de conflit.

Dans le chronogramme, on suppose que le terminal A est plus proche de la station de base gNb que le terminal B. Ainsi, la station de base reçoit d’abord le message 3 du terminal A et diffuse vers tous les terminaux un message de contrôle PDCCH DCI. Le contenu du message msg4 est transmis dans le canal PDSCH RRC_Setup avec la correspondance entre l’identifiant temporaire TC-RNTI1 et l’identité aléatoire UE-identity_A. La station de base diffuse le message qui est donc reçue par le terminal A et le terminal B. Le terminal A retrouve ainsi son identité temporaire UE-identity A dans le message de la station de base, les terminaux B et C reçoivent une réponse avec l’identité temporaire d’un autre terminal UE-identity A. Le terminal B attend la réponse du gNb (qui n’arrivera pas) jusqu’à la fin du temporisateur T300, le terminal C attend la réponse du gNB qui est transmise avant la fin du temporisateur T300.

Le message RRC_Setup permet également au terminal concerné de récupérer les informations de séquencement (attribution des ressources radio) pour la voie montante.

Les terminaux A et C vont donc pouvoir transmettre à la station de base la raison de leur demande d’accès (message NAS à destination de l’entité AMF), en encapsulant le message NAS dans la requête RRC Setup Request Complete.

Le terminal B va refaire une procédure d’accès aléatoire.

Figure 6 : Signalisation montante pour les terminaux A et C, procédure aléatoire pour l’UE B

 

 

Etablissement de la connexion radio – Partie 2 : Les ressources et l’identifiant aléatoire

Avant d’émettre sa demande d’accès aléatoire, le terminal doit récupérer un ensemble d’informations transmises par la station de base via le message SIB2 :

  • la configuration du PRACH (prach-ConfigIndex) ;
  • le jeu des préambules d’accès aléatoires disponibles (la racine q et les décalages de la séquence, se référer à la partie 1) ;
  • la fenêtre temporelle pour la réponse (ra-ResponseWindowsSize) ;
  • la puissance d’émission du préambule initial (preambleInitialRecievedTargetPower) ;
  • le facteur de rampe de puissance (powerRampingStep) ;
  • en cas de non réponse, le nombre maximum de préambules pouvant être émis (preambleTransMax) ;
  • le temporisateur de résolution de contention (mac-ContentionResolutionTimer)

Figure 1 : Extrait des informations du SIB2

A partir de :

  • l’information msg1-FrequencyStart, le terminal UE calcule la position fréquentielle de la localisation du canal PRACH ;
  • l’information msg1-FDM, le terminal connait le nombre d’occasion PRACH dans le domaine fréquentiel

A titre d’exemple :

Dans la bande FR2 :

Figure 2 : La configuration de l’accès aléatoire selon la table 38.211 v15.5-Table 6.3.3.2-4

Les numéros de slot de référence sont le 19 et le 29, nous allons maintenant calculer la position du slot du RACH à partir de la référence du slot 19 :

N°slot_RACH=Starting_symbol + Numero_occassion_PRACH*Durée_PRACH+Nbre_symboles_par_slot*numero_du_slot

Avec :

  • Starting_symbol est une valeur indiquée dans le tableau, la valeur est à 7
  • Numero_occassion_PRACH correspond aux occasions du RA. L’indice démarre à 0 jusqu’à Number_of_time_domain_occasion – 1. La valeur vaut 0
  • Nbre_symboles_par_slot est de 14
  • Numero_du_slot se calcule par la formule suivante :
    • Si SCS = {1,25 kHz, 5 kHz, 15 kHz, 60 kHz} alors Numero_du_slot=1
    • Si SCS = {30 kHz, 60 kHz} et
      • si le nombre de slot RACH par sous-trame =1 alors Numero_du_slot=1
      • sinon Numero_du_slot={0,1}

Dans notre exemple, le symbole sur lequel démarre le canal PRACH est à la position : 7+0*6+14*1=21 par rapport au slot 19. Il se situe donc à la position du symbole 7 du slot 20

Figure 3 : Exemple de transmission du PRACH (FR2, format A3)

Une fois le préambule sélectionné, le terminal UE détermine la prochaine occasion pour envoyer sa demande. La puissance d’émission est estimée à partir des paramètres reçus par le SIB2 et en augmentant la puissance à chaque retransmission.

La demande d’accès est contrôlée par la station de base en indiquant par le message SIB2 les occasions du canal PRACH dans le domaine temporel et fréquentiel.

Ressources Temporelles (prach-ConfigurationIndex)

La référence temporelle est la durée d’une trame, soit 10 ms. La transmission du canal PRACH au cours de la trame est définie par les paramètres suivants :

  • PRACH configuration period : Le numéro de trame SFN utilisé pour transmettre le canal PRACH est défini par la condition suivante : x mod SFN = y.
    • A titre d’exemple x=16, alors les occasions du canal PRACH sont espacées de 160 ms
    • Si x=16, y=1, alors les numéros de trames portant le canal PRACH sont définis par le numéro de trame SFN 1,17,33,49,…
  • SubFrame Number : Indique le ou les sous-trames dans la trames qui transportent le canal PRACH
  • Slots with PRACH : La référence est un espacement entre sous-porteuses (SCS) de 60 kHz, pour laquelle on a 4 slots par sous trames soit 40 slots par trame. Le nombre d’occasion est donc de 40 lorsque l’espacement entre sous-porteuses est de 60 kHz ou 40*2 slots pour un espacement entre porteuses de 120 kHz.

Ressources Fréquentielles

  • msg1-FrequencyStart : Indique la première ressource PRACH
  • msg1-FDM : Indique le nombre de ressources fréquentielles pour le PRACH (1,2, 4 ou 8)

A partir de ces valeurs, le numéro de la sous-trame et l’index de fréquence utilisé par le terminal pour transmettre sa demande d’accès aléatoire permet de calculer l’identifiant radio RA-RNTI :

RA-RNTI= 1 + s_id + 14 × t_id + 14 × 80 × f_id + 14 × 80 × 8 × ul_carrier_id

  • s_id : Index du premier symbole OFDM (entre 0 et 13)
  • t_id : Index du premier slot dans la trame (entre 0 et 79)
  • f_id : Index dans le domaine fréquentiel (entre 0 et 7)
  • ul_carrier_id est égal à 1 si la demande est faite dans la bande SUL, 0 sinon

Cette valeur sera utilisée par l’entité gNB pour répondre au terminal : le terminal écoute le canal PDCCH émis par l’entité gNb et recherche la réponse pour laquelle le code détecteur d’erreur CRC est mélangée par l’identifiant RA_RNTI (ou exclusif).

En fin de transmission, le terminal UE écoute (sur une durée définie) la réponse de l’entité gNB laquelle contient le numéro de référence RA-RNTI.

Références

3GPP 38.211

https://www.sharetechnote.com/html/5G/5G_RACH.html