MTC : Le réseau M2M / IoT sur la 4G – 2ème partie

Au cours de l’article précédent, nous avions évoqué les évolutions du réseau 4G vers le MTC. Cette évolution est une brique de base pour le réseau 5G et les fonctionnalités que nous avions décrites sont les 4 suivantes :
• control plane CIoT EPS optimization
• user plane CIoT EPS optimization
• EMM-REGISTERED without PDN connection
• S1-U data transfer and header compression

(Je vais reprendre la notation de l’article précédent)
II-3-a) Control plane CIoT EPS optimisation
C-Plane CIoT EPS Optimization est une méthode destinée à encapsuler les données utilisateurs dans les messages du plan de contrôle. En évitant de mettre en place de la signalisation pour rétablir les bearer, cette méthode permet de réduire le nombre de message sur le plan de contrôle lorsque les données à transmettre sont de petites tailles et par conséquent, on réduit la bande utilisée et la consommation du dispositif.
Les fonctionnalités supportées par cette méthode sont :
• Transport de données utilisateurs (IP et Non IP)
• Point d’ancrage de la mobilité du dispositif
• Compression d’entête pour les flux IP
• Protection par intégrité et chiffrement de la Data transmise dans le plan de contrôle
• Interception légale.
Cette méthode s’appuie sur le MME, ce dernier est considéré comme un nœud de transfert de données et l’eNb est vu comme un relai :
• entre l’UE et le PGW (connectivité PDN : UE -> eNb -> MME -> SGW -> PGW) en utilisant les protocoles de signalisation (S1-AP et GTP-C)
• ou entre l’UE et l’entité SCEF (connectivité PDN : UE -> eNb -> MME -> SCEF).

Si l’UE a un stack IP, les données sont transmises en IP de l’UE vers le PGW.

Figure 5a : Control plane IP DATA

Si l’UE ne contient pas de stack IP (NIDD), les données sont transmises au MME via le protocole S1-AP et envoyées soit vers le PGW soit vers le SCEF. Lorsque l’UE fait une demande de connexion vers l’AS en non IP, l’UE indique l’APN  de passerelle. Le choix de la connectivité PDN entre le PGW et le SCEF est défini au niveau du HSS dans la donnée de souscription APN.

Le profil du device au niveau du HSS indique l’APN que doit utiliser le dispositif pour transmettre des données non IP. L’APN route les messages vers le PGW ou vers le SCEF.

On considère ici que l’APN renvoie vers le PGW.

Lorsque l’UE fait une demande d’attachement, il indique :

  • Qu’il souhaite une connection PDN non IP
  • Le réseau utilise l’APN fourni par l’UE ou l’APN contenu dans le profil de l’UE au niveau du HSS et transmis au MME
  • Le PGW donne à l’UE la taille maximale autorisée des paquets (qui peut etre de 128 octets)
  • Les paquets non IP sont transmis via le plan de contrôle par des messages NAS

 

Figure 5b : Control plane Non IP DATA vers le SGW

 

Connection non IP via le SCEF

Dans les deux cas, l’UE émet une demande de transmission de données via la procédure RRC SERVICE REQUEST en encapsulant le message ESM DATA TRANSPORT (message NAS entre l’UE et le MME via l’eNb en relais). Dans le cas précis ou l’UE ne contient pas de stack IP, il informe le MME qu’il souhaite établir une connexion PDN non IP.

Dans le cas de données entrantes :

  • Les données peuvent être bufferisées dans le SGW lequel transmet un message de notification « Downlink Data Notification Message » au C-SGN. Le C-SGN répond au SGW en indiquant le temps restant avant que le device soit joignable (PSM Mode). Cela permet au SGW d’étendre le temps pendant lequel le message sera conservé.
  • Les données peuvent être bufférisées dans le SCEF

 

II-3-b) User plane CIoT EPS optimisation

Dans le cas ou l’UE supporte l’optimisation sur le plan de données (User Plane CIoT EPS Optimization), il doit obligatoirement supporter la méthode S1-U Data transfer. Ainsi,  les données sont transmises via l’interface S1-U, c’est-à-dire entre l’eNb et le SGW.

L’optimisation User plane CIoT EPS optimisation est apportée par une amélioration du contrôle de bearer et par de nouveaux messages RRC ainsi que de nouveaux états RRC permettant un établissement de bearer plus rapide et plus efficace.

 

Les nouveaux états RRC sont : RRC-Suspend et RRC-Resume.

  • Procédure RRC Suspend. Cette procédure est activée par l’eNb permet de libérer le bearer radio entre l’eNb et le device, ainsi que le bearer S1 entre l’eNb et le SGW. Au niveau du SGW, cela supprime dans la table de contexte le numéro d’identifiant TEID du flux et l’adresse IP du eNb mais les autres informations sont conservées (QoS, clé de sécurité,…). Le MME conserve les informations de la connexion S1-AP et du bearer, place le device dans l’état ECM-Idle et répond à l’eNB de la libération du bearer par le message UE Context Suspend response. Le eNB conserve le contexte mais transmet à l’UE le message « RRC Connection Suspend ». Le device conserve les informations AS (clé de sécurité, information sur le flux de trafic) et se met en état ECM-Idle et RRC-Idle
  • Procédude RRC Resume permet de ré-activer les états qui ont été sauvegardés au niveau du device, de l’eNb et du MME. Dans un premier temps, le device récupère les informations de la couche AS et contacte l’eNB. Ce dernier accomplit une vérification de la sécurité pour ré-établir le bearer radio. L’eNB informe le MME par le message « UE Context Resume Request » de la ré-activation du bearer radio. Le MME récupère le profil du S1-AP et place le device dans l’état ECM-Connected. Il retourne vers l’eNb une confirmation « UE REsume Context Response » contenant l’adresse IP du SGW et le MME envoie l’adresse du eNb et le TEID du eNB (informations S1-AP conservées) vers le SGW.

Figure 6 : Messages RRC reprendre ou suspendre un contexte

 

Figure 7 : Call Flow

Pendant l’état RRC-Suspend, le device n’a plus de connexion radio. Il peut de plus être en mode eDRX, donc en cas de mobilité il ne détecte pas le changement d’eNB. Lorsque le device exécutera la procédure RRC Resume vers le nouvel eNb, celui-ci va demander à l’ancien eNb de lui transférer les informations AS. L’ancien eNb en profite pour supprimer le contexte (clé de sécurite, …). Le nouveau eNb crée un TEID, informe le MME lequel transfère le nouveau TEID et l’adresse du nouvel eNb vers le SGW.

De plus, cette méthode permet aussi de transférer des données non IP entre le SGW et le PGW

II-3-c) EMM-REGISTERED without PDN connection

Lors de la procédure d’attachement, l’UE informe le MME qu’il peut être dans l’état EMM-REGISTERED without PDN connection par le message “attachwithoutPDN Connectivity”. Classiquement, un smartphone (Human UE) émet dans la requête EMM d’attachement  un message ESM pour définir les caractéristiques du bearer par défaut. Dans le cas qui nous intéresse, le message ESM PDN CONNECTIVITY REQUEST est remplacé par le message ESM DUTY MESSAGE, l’UE reste connecté au réseau (EPS attached) même si toutes les connexions PDN ont été libérées. On se retrouve donc dans le cas 3G ou le contexte de l’UE n’existe pas au niveau des entités du réseau.

Remarque : « EMM-REGISTERED without PDN connection » à la même signification que « EPS attach without PDN connectivity

Lorsque le dispositif s’allume, avant d’émettre sa demande d’attachement, il lit le SIB2 transmis par l’eNb pour savoir vérifier la compatibilité de la cellule. Si le MME ne supporte pas l’état « EMM-REGISTERED without PDN connection » alors l’UE établie un bearer par défaut. Lorsque l’UE souhaitera émettre des données, un bearer EPS par défaut sera mis en place sauf si l’UE indique une méthode de transmission, par exemple SMS seulement, lors de son attachement.

II-3-d) S1-U data transfer and header compression

L’UE qui supporte le User Plane Optimisation EPS doit supporter le S1-U data transfer afin de transmettre les données sur le plan utilisateur.

On suppose maintenant que l’UE et le MME supporte à la fois la fonctionnalité S1-U data transfer et la fonctionnalité Control Plane EPS Optimization pour encapsuler la DATA entre le CN et l’UE dans des messages NAS

Lorsque le MME reçoit une requête de connexion PDN, le MME détermine la quantité de données à transmettre sur le lien UL et DL et décide ainsi si les données doivent être transmises sur le plan de contrôle ou sur le plan utilisateur. Il vérifie également si l’UE peut supporter

 

Figure 8 :  Etablissement du S1-U bearer pendant le transport de données dans le plan de Controle

1 – L’UE transmet/reçoit des données dans le plan de control (Control Plane CIoT EPS Optimisation).

2 –3 L’UE reçoit une réponse pour faire une demande d’établissement de bearer dans le plan utilisateur (User Plane Bearer). Dans ce cas, l’UE envoie un message NAS vers le MME. Le message est encapsulé dans un message RRC-Service Request émis au eNb, et un message S1-AP UL entre le eNb et MME. De manière classique, le message contient les informations suivantes :

  • NAS message
  • TAI+ECGI de la cellule sur laquelle l’UE est en communication
  • S-TMSI
  • CSG ID (si la cellule sur laquelle est connectée le mobile est une cellule CSG)
  • CSG access Mode

4 – Le MME fait le transfert des données transmises sur le plan de signalisation vers le bearer

Dans le prochain article, nous décrirons certaines procédures et protocoles

Related posts:

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *