Pourquoi la 4G utilise l’OFDMA

Nous allons aborder aujourd’hui une présentation technique (extrait d’une présentation à l’ENS de Cachan)

OFDMA

La technique nommée OFDMA est une technique de Multiplexage d’Accès par porteuses orthogonales. OFDMA signifie : Orthogonal Frequency Division Multiple Access et fait partie de la famille FDMA.

Chaque opérateur dispose d’une bande de fréquence, laquelle doit être utilisée à bon escient pour couvrir un ensemble d’utilisateur. Le FDMA consiste à allouer des bandes de fréquences à différents utilisateurs, à l’image de la transmission radio : Chaque radio à sa propre fréquence.

Pour éviter le brouillage, les bandes sont séparées par une bande libre (gap) entre les deux bandes utilisées. Cette bande n’est donc pas exploitée.

FDM.JPG

L’OFDM est utilisée pour exploitée au mieux la bande de fréquence disponible comme le montre la figure ci-dessous

OFDM.JPG

 

Pourquoi orthogonal?

L’orthogonalité vient du fait que le produit scalaire pendant la durée de transmission d’un symbole entre chacune des porteuse est nulle. cela n’est possible que si l’espacement entre deux porteuses consécutives est égale à l’inverse de la durée d’un symbole.

OFDM – Quel intérêt?

La propagation des ondes s’effectuent dans l’espace Hertzien, mot savant pour désigner l’air. L’onde n’est pas guidée comme c’est le cas dans un câble, de ce fait elle subit des réflexions sur les murs, le sol et tout élément entre la station de base et l’antenne de votre téléphone (voiture, pieton, …). Le nombre de réfléxions, diffractions et réfractions varie en cours du temps par conséquent le temps mis par l’onde pour arriver à la station de base varie d’un instant à un autre.

Avec l’existence d’obstacles multiples, le récepteur recevra plusieurs répliques d’un même signal (l’antenne émet une information, celle-ci pourra atteindre le récepteur directement mais l’onde pourra aussi atteindre le récepteur en parcourant des trajets différents. Comme la vitesse de l’onde – célérité – est constante, lorsque l’onde emprunte des chemins différents, elle parcourt des distances différentes donc le signal arrive à des instants différents au niveau du récepteur). On appelle Tm, le temps de retard maximum. Les « échos » reçus permettent de qualifier la fonction de transfert du canal à un instant donnée, on estime ainsi la sélectivité en fréquence du canal par rapport à l’inverse du temps de retard :  Le canal ne se comporte pas de la même manière suivant la fréquence du signal. Le signal est alors déformé à la réception et les données dispersées dans le temps pourront apporter de l’interférence entre symbole.

  • A retenir : La bande de cohérence correspond à l’étalement temporel.

 

Mais, le canal varie aussi dans le temps : quand on est mobile, l’environnement change rapidement, autrement dit les obstacles ne sont plus aux mêmes endroit par rapport à l’émetteur. On relie donc la mobilité à la fréquence Doppler c’est à dire à une modification de la fréquence utilisée (c’est ce phénomène qui explique une variation du son d’une sirène du grave vers l’aigu, dans le cas d’une transmission, un signal transmis à 800 MHz pourra être reçu à la fréquence 800,1 MHz) et aux modifications du canal. Mais si on est fixe, l’environnement lui peut varié (voitures, piétons, ..). On définit ainsi le temps de cohérence (nommé Tc), l’intervalle de temps pendant lequel le canal est constant (à peu près constant)

  • A retenir : La Temps de cohérence correspond à l’étalement Doppler c’est à dire l’étalement fréquentiel.

 

Pour résumer, à un instant donnée le récepteur reçoit des échos d’un même signal (étalement temporel). Chaque écho est défini par son retard et son amplitude (sélectivité fréquentielle du canal). A un instant plus tard, si les échos sont répartis de la même manière (même retard et même intensité), on considère que le canal est stable dans le temps séparant les deux réceptions, sinon on calcul le temps de cohérence.

La diversité temporelle permet d’utiliser les caractéristiques du canal en s’appuyant à la réception sur deux répliques d’un même signal émis par l’émetteur à deux instants différents. La diversité temporelle suppose que l’émission des signaux soient séparés d’un temps Tc.

La diversité fréquentielle permet d’utiliser les caractéristiques du canal en s’appuyant à la réception sur deux répliques d’un même signal émis par l’émetteur à deux fréquences différentes. La diversité fréquentielle suppose que les deux répliques soient transmises sur deux bandes séparées d’au moins d’un écart Bc.

  • A retenir : Le canal est sélectif en fréquence et sélectif en temps .


Exemple de la selectvité en fréquence sur un exemple simple

1 – Interférences

De par les multi-trajets, le signal reçu par l’antenne est une réplique du signal émis à des instants différents. Nous représentons l’effet des multi-trajets sur un signal émis

IES

 

A la réception, on constate de l’interférence : les signaux de couleurs différentes se chevauchent. Le signal reçu est la somme du trajet direct avec les versions retardées

2 – Egalisation (diversité fréquentielle)

A titre d’exemple, supposons une radio émettant la même musique sur deux fréquences différentes, sans aucune égalisation, la musique à la sortie de votre chaîne Hi-FI serait légèrement différentes : les graves seront plus fort sur une radio, les aigues sur l’autre. Or, les graves sont les fréquences basses et les aigues les fréquences hautes. Pour régler cela les chaînes Hi-Fi possède un égaliseur qui permet du règler (to tune en anglais) le niveau des aigus, et des graves.  Ainsi est le rôle du tuner, et le fait de pouvoir régler précisément les fréquences permet d’avoir une meilleure qualité du signal. Sans tuner, vous ne pouvez qu’augmenter ou baisser le volume de votre radio (l’exemple vaut aussi avec une table de mixage).

Etant donné que l’OFDM consiste à transmettre des signaux à des fréquences différentes, il est plus facile d’égaliser chaque fréquence en réception.

 

Application à la 4G

Supposons une application nécessitant un débit de 1 Msymboles/s, donc 1 symbole émis toute les 1µs. Imaginons un canal dont la réponse impulsionnelle (c’est à dire le retard maximum d’un écho) est Tm=250 µs. Dans ce cas, le dernier écho du premier symbole émis sera reçu en même temps que la première réplique du 250ième symbole émis. Un bit va donc interférer avec 250 bits (Interférence entre symbole).

L’OFDM consiste à répartir les symboles sur un grand nombre de porteuses à bas débit. Pour transmettre 1 Msymboles/s, je vais utiliser 1000 porteuses. Sur chaque porteuse, je vais transmettre avec un débit de 1ksym/s soit un symbole toute les 1 ms. Il y a donc presque plus d’interférence (un symbole interfère sur 1/4 du temps d’un autre symbole). Pour éviter l’interférence, on rajoute un temps de garde. Dans notre exemple, il suffit de transmettre un symbole puis pendant un temps de 250 µ ne rien transmettre du tout (Zero Padding) ou transmettre une copie sur 250 µs du signal OFDM (Cyclic Prefix).

Dans le prochain article, nous traiterons de l’implémentation physique de la 4G, c’est à dire l’écart en fréquence, la durée d’un symbole, le débit. ….

 

4 commentaires sur “Pourquoi la 4G utilise l’OFDMA

  1. Bonjour,

    Cette article fut fort intéressant fort intéressant du fait des enjeux et des avantages de la technique OFDMA.
    J’espère lire retrouver très prochainement d’autres recherches aussi pertinente que la votre.

    Bonne soirée

    Limou

Répondre à flaunay Annuler la réponse

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *